
2. Primitive Types and Operators 17 

2.1 Modulus Operator % ..................................................................... 17 
2.2 Conversion Between Different Types in Calculation ........................... 17 

2.3 Do Not Rely On the Precision of Float Numbers ................................ 17 
2.4 Assignment Operators .................................................................. 17 
2.5 Value of Assignment Expression ..................................................... 17 
2.6 The Integer Value of Character ...................................................... 17 

2.7 Logic Operators ........................................................................... 17 

3. Control Structures 18 

3.1 Control Structures ........................................................................ 18 
3.2 if ................................................................................................ 18 
3.3 if-else ......................................................................................... 18 
3.4 Conditional Operator .................................................................... 18 

3.5 while .......................................................................................... 18 
3.6 for Loop ...................................................................................... 18 
3.7 Avoid Modifying the Control Variable in the Loop Body ...................... 19 

3.8 switch ......................................................................................... 19 
3.9 do-while ...................................................................................... 19 

3.10 “break” and “continue” ................................................................. 19 

4. Arrays 21 

4.1 Declare and Initialize Array ........................................................... 21 
4.2 Array Size Must Be Constant.......................................................... 21 

4.3 Array Size ................................................................................... 21 
4.4 Array and Pointer ......................................................................... 21 

4.5 Pass Array to Function .................................................................. 22 
4.6 Searching Array ........................................................................... 23 

4.7 Multiple-Subscripted Array ............................................................ 23 
4.8 String Handling Functions ............................................................. 23 

5. Pointers and Strings 25 

5.1 Pointer Declaration and Initialization............................................... 25 
5.2 Casting Between Numeric Address and Pointer ................................ 25 

5.3 Constant Pointer  and Pointer to Constant ....................................... 25 
5.4 Pass Pointer By Reference ............................................................. 25 

5.5 Receive array with pointer ............................................................. 26 
5.6 Pointer Expressions and Arithmetic ................................................. 26 
5.7 Pointer Offset and Subscription ...................................................... 26 
5.8 "sizeof" Operator.......................................................................... 27 

5.9 Size of String and Character Array ................................................. 27 
5.10 Function Pointer and Call Back Technique ........................................ 27 
5.11 Array of Function Pointer and Menu-Driven System .......................... 29 
5.12 Power and Flexibility of Pointers ..................................................... 29 



6. Class 32 

6.1 Class .......................................................................................... 32 
6.2 Methods of a Class ....................................................................... 32 
6.3 Constructor ................................................................................. 32 
6.4 Default Construcotr ...................................................................... 33 

6.5 Copy Constructor ......................................................................... 33 
6.6 Accessing Class Members .............................................................. 33 
6.7 Typical Methods ........................................................................... 33 
6.8 Avoid Repeating Code ................................................................... 34 

6.9 When Constructors and Destructors are Called ................................. 34 
6.10 Default Memberwise Copy and Default Memberwise Assignment ........ 34 
6.11 Pass-by-value and Copy Constructor .............................................. 34 
6.12 Copy Constructor vs. Factory Method .............................................. 34 

6.13 Various Places to use “const”: Data  Member, Method, Argument 
and Return type .................................................................................. 35 
6.14 Member initializer ......................................................................... 36 

6.15 Member Objects ........................................................................... 36 
6.16 Member Objects Should Be Initialized with Member Initializers .......... 36 

6.17 Friend ......................................................................................... 37 
6.18 this pointer.................................................................................. 38 

6.19 Memory Allocation and Manipulation ............................................... 38 
6.20 Pointer Status after delete ............................................................. 39 

6.21 Memory Leak ............................................................................... 39 
6.22 Who is Responsible to Delete an Object .......................................... 39 

6.23 Static Data Member ...................................................................... 40 
6.24 Static Method .............................................................................. 40 

6.25 assert ......................................................................................... 41 
6.26 Proxy/Wrapper Classes ................................................................. 41 

7. Operator Overloading 43 

7.1 Fundamentals of Operator Overloading ........................................... 43 

7.2 Overloading binary operators ......................................................... 43 

7.3 Operator << and >> can not be Member Functions .......................... 43 
7.4 Overloading Unary Operators ......................................................... 43 
7.5 Operator Cascading ...................................................................... 43 
7.6 Subscription Operator [ ] .............................................................. 44 

7.7 "operator =" and Default Memberwise Copy .................................... 44 
7.8 Orthodox Canonical Form (OCF) ..................................................... 44 
7.9 Check for Self-assignment ............................................................. 44 
7.10 An Example about Pass-by-reference .............................................. 44 

7.11 lvalue and rvalue ......................................................................... 44 
7.12 Overloading ++ and --.................................................................. 44 
7.13 Example: Date Class .................................................................... 45 



8. Inheritance 48 

8.1 Method Overriding ........................................................................ 48 
8.2 Initialization of the Base-class Part of the Object .............................. 48 
8.3 Conversion between base class and derived class ............................. 49 
8.4 “is-a”, “has-a”, "Use-A" and "Know-A" Relationship .......................... 49 

8.5 Public, Protected and Private Inheritance ........................................ 49 
8.6 Shrinking Inheritance ................................................................... 50 
8.7 Methods That Are Not Inherited ..................................................... 50 
8.8 Software Engineering with Inheritance ............................................ 50 

8.9 Partial Assignment ....................................................................... 50 
8.10 Sequence of Constructor Call in Inheritance .................................... 51 
8.11 Default Constructor in Inheritance .................................................. 52 

9. Polymorphism 53 

9.1 Virtual Methods ............................................................................ 53 
9.2 Polymorphism .............................................................................. 53 

9.3 Dynamic and Static Binding ........................................................... 53 
9.4 Abstract Base Class (ABC) ............................................................. 53 
9.5 Virtual Destructor ......................................................................... 53 

9.6 Hierarchy for Interface and Implementation .................................... 53 
9.7 Base Class Idiom ......................................................................... 53 

9.8 Apply Polymorphism on Operator << and >> .................................. 54 

10. Stream IO 55 

10.1 Iostream Library Header Files ........................................................ 55 
10.2 Stream IO Classes and Objects ...................................................... 55 

10.3 Output the address of a pointer ..................................................... 55 
10.4 Method put .................................................................................. 55 
10.5 Stream Input ............................................................................... 55 
10.6 Unformatted IO............................................................................ 56 

10.7 Stream manipulators .................................................................... 56 
10.8 Stream Error States ..................................................................... 58 

11. File Processing 59 

11.1 Data Hierarchy ............................................................................ 59 
11.2 Primary  Key ............................................................................... 59 

11.3 Files and Streams ........................................................................ 59 
11.4 File Open Modes........................................................................... 59 

11.5 Checking open and input success ................................................... 59 
11.6 Method exit ................................................................................. 60 

11.7 File Position Pointer ...................................................................... 60 
11.8 Sequential Access File ................................................................... 60 

11.9 Random Access File and Object Serialization .................................... 60 
11.10 File and Directory Manipulation .................................................... 62 



  

  



1. 1.         C++ BASICS 

1.1 1.1          Advantage of Structured Programming 

Although it is a trend to use object-oriented programming, 

structured programming also has its advantage. Internal structure 
of objects are often best built with structured programming 
techniques. Also, the logic of manipulating objects is best 
expressed with structured programming.. 

1.2 1.2          Interpreter and Compiler Program 

Interpreter programs were developed that can directly execute 

high-level language programs without the need of compiling these 
programs into machine language. It is used on cases that 

programs are frequently updated. Once the program is developed, 
a compiled version will be produced to run quickly.. 

1.3 1.3          Escape Sequence 

“\” is escape character. It together with the following character 

forms an escape sequence used in output statement. They are 

used to control the printer and are not printed out. 

“\n” change to a new line. It is a good common practice to add 

it in the end of all printing statements. 

“\t” horizontal tab. 

“\r” carriage return – return the cursor to the beginning of 
current line. 

“\a” alert. Sound the system bell. 

‘\\” used to print out a “\”. 

“\”” used to print out a double quote. 

1.4 1.4          Namespace 

  
#include <iostream> 
using namespace std; 
  

int main( ) 

{ 
    cout << “Welcome! \n”; 

    std::cout << “Welcome! \n”; 
    return 0;  

} 



A namespace is a group of software components with the same 

name prefix – e.g., std. Each header file in the C++ draft standard 
uses a namespace called “std” to guarantee that every feature 

provided by the C++ standard library is unique from software 
components developed by other programmers. The statement 

above simply says that we are using software components from 
the C++ standard library, such as cout. If we use the namespace 

in front of each software component, then we needn’t the 
statement at the top. If we want to define our own class library, 

we should use our own namespace.  

1.5 1.5          Advantages of OO Programming 

OO programming has a lot of advantages over procedure 
programming, many of them are achieved by data encapsulation.  

Procedure programming can also call existing functions to achieve 
code reusing, but functions and data are separate - in other 
words, functions are stateless - they don’t remember their own 

state across different calls. Whenever a function is called, all data 
to be manipulated have to be passed to and returned by the 

function. Data are therefore exposed to programmers, who may 
manipulate the data wierdly or carelessly. Besides, a single piece 

of data may be passed around and handled by a lot of functions 
within a large project. When an error finally emerges, it may be 

very difficult to find out where the error happens. 

In comparison, OO programming with data encapsulation can 

avoid these problems. Because data are encapsulated with 
functions to form an object, functions can remember their own 
state and their results. There is no longer need to pass this part of 
data to these functions every time they are called. Sensitive or 

private data can be therefore isolated from outside world. If 
anyone wants to do anything on the data, they have to do it 
through the object’s functions, which can be well defined and 

error-proof.  

This simulates real world objects better. Take a man as an object. 
This object can have a data members such as body temprature. 
Other people can not directly change his body temprature without 

going through his own cooperation and physical reaction. So body 
temprature is a private data members isolated from the public. 
This isolation eliminates the possibility that other programs may 
accidentally change an object’s own sensitive data inproperly. 

A well-written class is cohesive and self-contained. It contains all 
necessary data to similate the real-world problem, all necessary 



functions to manipulate these data and provide services to outside 

world. It exists and functions quite independently, reducing the 
coupling with outside world to the lowest extent, and therefore 

may be reused in different occasions.  

An object “knows” how to behave itself properly – how to 

construct and initialize itself, how to response to different kinds of 
external messages properly, how to destroy itself, etc.. Once a 
class is properly written and fully tested, other programs can 
simply make use of it to perform a certain task, and will have little 

chance to encounter any error.  This greatly reduces the 
complexity of programming and possibility of errors.  

So generally speaking, OO programming and data encapsulation 
has the following advantages: 

1. 1.        Reduces data exposure: because private data are 
encapsulated within objects, when their functions are called, 

less data need to be tranmitted. These reduces the exposure of 
data and the chance of errors. 

2. 2.        Clearer responsibility for data: because each object is 

responsible for his own private data and others can not wrongly 
change it, when a piece of data is wrong, we easily know who is 

doing the wrong thing. 

3. 3.        Less error-prone: if a project uses only those well-
written and fully tested classes, it is much easier to organize, 
modify, debug and maintain than those written in procedural 

languages. The bigger the size, the more obvious the 
advantage. 

4. 4.        More stable for clients: when a class's implementation is 
changed, as long as its function signatures are not changed, a 

program which uses this class will not be affected.  

5. 5.        Enhances software reuse: by composition (including 

other object as data member) and inheritance (build a new 

class based on a base class), software reuse is greatly 
strengthened. 

1.6 1.6          Library math.h 

Consists of all mathematical functions: 

  
ceil (x) ceil (9.2) = 10 

cos (x) 
exp (x) ex 

fabs(x) absolute value of x 



floor (x) floor (9.9) = 9 

fmod (x, y) reminder of x/y as a float. fmod (9.85, 3.2) = 
0.25 

log (x) log e
x 

log10 (x) log 10
x 

pow (x, y) x y 
sin (x) 

sqrt (x) sqrt (9) = 3 
tan (x) 

1.7 1.7          Function Prototype  

The function prototype is placed outside any function including 

“main”, right after the “#include” preprocessor directive. That’s 
why function prototype has file scope. 

Function Prototype is something FORTRAN and earlier versions of 
C do not have. It is designed to enable the compiler to know what 
kind of a function it is before a function is called. That’s why when 

the function body is before the calling statement the function 
prototype is not necessary. It also enables the compiler to find out 

whether a function is properly called i. g. with wrong numbers of 
arguments, and convert the parameter type if the arguments 

supplied is not correct. 

You can include the names of the parameters into the function 
prototype to make it look more clear, but the compiler will ignore 
the parameters. 

1.8 1.8          Block 

The declarations and statements enclosed in braces “ { }” is called 
a block. A block is just a compound statement which includes 
declarations. A block instead of a function is the smallest 

combination of statements in C++. You can create a block 
anywhere you like – just enclose at least one declaration and one 
statement with braces.  

The variables declared in a block has a “block scope” – they are 
hidden outside this block. Variables declared outside this block in 
the same function will still be “visible” inside this block (so are 
global variables, of course). So the character of a block is different 

from a function: a function is of two-way information hiding, while 
a block is of one-way only. 

1.9 1.9          time(0) 

This function returns the current calendar time in seconds. Its 



header file is “time.h”. 

1.10 1.10       Random Number Generation 
  

unsigned seed; 
cin >> seed; 
srand(seed); // or srand (time (0) ) 
y = a + rand( ) % b; 

♦        Pseudo-random sequence 

Function “rand” returns a pseudo-random sequence of integer 

between 0 and RAND_MAX (a symbolic constant defined in the 
“stdlib.h”). The function prototype of “rand” is in this header file 
“stdlib.h”. The numbers generated by “rand” is actually a fixed 
sequence.  Each time you run this program, you get the same 

sequence. To change this sequence, you have to use another 
function “srand” to “seed” the “rand” function with different 
unsigned integer. Its header file is also “stdlib.h”. For each 

integer a unique and fixed sequence is generated by “rand”. 

♦        Scaling 

The function to generate a random sequence of number within a 
certain range is called “scaling”: 

  
n = a + rand () % b 

the random numbers are from a to a + b. 

1.11 1.11       Enumeration 

An enum is an alias of an integer.  It setups up a corresponding 
relationship between a specific integer and a user-chosen 

identifier.  Instead of having to remember what an integer 
represents, the programmer can easily remember the self-
explained alias.  For example, a set of integers from 0 to 7 
represents color black, blue, green, cyan, red, magenta, brown 

and white. After we define 

  
enum Color {Black, Blue, Green, Cyan, Red, Magenta, Brown, 

White}; 

we can always use “Black” instead of 0, but the compiler will just 
treat “Black” as 0. 

Now “Color” is a user-defined type.  You can use this type just like 
int, float to declare variables, but these variables can only have 
the values enclosed in { }: 



  

Color c1, c2; 
c1 = Green; 

c2 = Brown; 
if(c1 == Red)...; 

You can also join the definition of the enum type and declaration 
of its variables together: 

  
enum {Black, Blue, Green, Cyan, Red, Magenta, Brown, White} 

c1, c2; 

You can assign enums to both variables of their own types, or 

simply integer variables: 
  

enum {Black, Blue, Green, Cyan, Red, Magenta, Brown, 
White}; 

int c1, c2; 

c1 = Green; 
c2 = Brown; 
if(c1 == Red)...; 

By default, the first enum enclosed in { } has the value of 0, the 

next 1,... , unless specifically defined: 
  

enum {Black, Blue, Green, Cyan = 23, Red, Magenta, Brown, 
White}; 

Then Black = 0, Blue = 1, Green = 2, Cyan = 23, Red = 24, 
Magenta = 25,... 

1.12 1.12       Global Variables 

Global variables are variables declared outside any block including 
main function. They are visible in all blocks in all files in the same 
process. In files other than the one where the global variable is 

defined, you have to use keyword extern to tell the compiler: 

"The following global variable whose name is xxx and whose type 
is xxx is defined elsewhere, and you have to find out where 

yourself."  

Global variables can be defined in either a header file or a source 
file. But if you define a global variable in a header file, then when 
more than one files include that header file, multiple copies of the 

same global variable will be instantiated, and you will have link 
errors. So you should normally put the definition of global 
variables in a source file. 

  



//************ globals.cpp ***************** 

// You don't need a globals.h! 
#include "stdafx.h" 

  
int array[3] = {1, 2, 3}; // array is the global object 

  
  

//*************** A.cpp ******************* 
#include "stdafx.h" 

#include "A.h" 
#include <iostream.h> 

  
extern int array[]; 

  
A::A() 

{ 
    cout << array[0] << " " << array[1] << " " << array[2] << 

endl; 

} 
  

  
//************** B.cpp ********************* 

#include "stdafx.h" 
#include "B.h" 

#include <iostream.h> 
  

extern int array[]; 
  

B::B() 
{ 

    cout << array[0] << " " << array[1] << " " << array[2] << 

endl; 
} 
  
  

//**************** main **************** 
#include "stdafx.h" 
#include "a.h" 
#include "b.h" 

  
int main(int argc, char* argv[]) 
{ 
 A a; 

 B b; 



 return 0; 

} 

Output will be: 
  
1 2 3 

1 2 3 

But the above approach is not what people normally do. Because 

this approach requires each file which uses those global variables 
to declare all of them which keyword extern one by one, causing 

redundant code and is error-prone. The normal approach is to 
create a separate header file and put all extern declarations of 

the global variables in it. Logically this header file should have the 
same name as the source file, but it can be different (as shown in 

the following example). Then all files which accesses the global 
variables can simply include this header file: 

  

//************ globals.cpp ***************** 
#include "stdafx.h" 
  
int array[3] = {1, 2, 3}; // array is the global object 

int ANY = 4; 
  
  
//************** Any.h ***************** 

#ifndef _ANY_H 
#define _ANY_H 
  
extern int array[]; 

extern int ANY; 
  
#endif 

  
  

//*************** A.cpp ******************* 
#include "stdafx.h" 
#include "A.h" 
#include <iostream.h> 

#include "Any.h" 
  
A::A() 
{ 

    cout << array[0] <<" "<< array[1] <<" "<< array[2] <<" 
"<< ANY << endl; 



} 

  
  

//************** B.cpp ********************* 
#include "stdafx.h" 

#include "B.h" 
#include <iostream.h> 

#include "Any.h" 
  

B::B() 
{ 

    cout << array[0] <<" "<< array[1] <<" "<< array[2] <<" 
"<< ANY << endl; 

} 
  

  
//**************** main **************** 
#include "stdafx.h" 

#include "a.h" 
#include "b.h" 

  
int main(int argc, char* argv[]) 

{ 
    A a; 

    B b; 
    return 0; 

} 

Output will be: 
  
1 2 3 4 

1 2 3 4 

1.13 1.13       Constant Global Variables 

In a sense, the reason you want to use global variable is to pass 

data between several objects which do not have much coupling 
between them. Therefore global variables should normally not be 

constant. When you use a constant global variable, you actually 
want a symbol or an alias for a constant. Therefore it is clearer to 

use a #define to define this constant. For this reason, C++ 
compiler would not support syntax "extern const ...". If you want 

to have a constant global variable, you should put it in the header 
file (Any.h). Compiler will treat it in the same way as a #define. 



1.14 1.14       Creation and Deletion of Global Variables 

The global object's constructors are called before any program is 
execuated, and their destructors are called after all program ends. 

  
//************** A.h ************** 

class A   
{ 
public: 
 void Say(); 

 A(char * name); 
 virtual ~A(); 
private: 
 char * m_name; 

}; 
  
//************* A.cpp *************** 

#include "stdafx.h" 
#include "A.h" 

  
A::A(char * name) : m_name(name) 

{ 
 char buf[80]; 

 sprintf(buf, "Constructor of %s\n", m_name); 
 printf(buf);  

} 
  

A::~A() 
{ 
 char buf[80]; 
 sprintf(buf, "Destructor of %s\n", m_name); 

 printf(buf);  

} 
  

void A::Say() 
{ 

 char buf[80]; 
 sprintf(buf, "My name is %s\n", m_name); 

 printf(buf); 
} 

  
**************** B.h ********************* 

class B   
{ 

public: 



 B(); 

 virtual ~B(); 
}; 

  
**************** B.cpp ********************* 

#include "stdafx.h" 
#include "B.h" 

#include "A.h" 
  

A g_b("GLOBAL_IN_B"); 
  

B::B() 
{ 

 char buf[80]; 
 sprintf(buf, "Constructor of class B\n"); 

 printf(buf);  
} 
  

B::~B() 
{ 

 char buf[80]; 
 sprintf(buf, "Constructor of class B\n"); 

 printf(buf);  
} 

  
*************** Test.cpp ***************** 

#include "stdafx.h" 
#include "a.h" 

  
A g_main("GLOBAL_IN_MAIN"); 

extern A g_b; 

  
int main(int argc, char* argv[]) 
{ 
 printf("\nBeginning of main!\n"); 

 g_b.Say(); 
 printf("End of main!\n\n"); 
 return 0; 
} 

The output will be: 
  

 Constructor of GLOBAL_IN_MAIN 
 Constructor of GLOBAL_IN_B 

  



 Beginning of main! 

 My name is GLOBAL_IN_B 
 End of main! 

  
 Destructor of GLOBAL_IN_B 

 Destructor of GLOBAL_IN_MAIN 

Because global objects are created before any code is executed, 
they must not be any resource that can not be initialized "on the 
spot" and has to be initialized by the program. If you have to have 

a global resource like that, create a global reference (pointer) to 
the resource, which can be initialized to NULL on the spot, then 
create and initialize the resource in the program. 

1.15 1.15       Name Conflict Between Local and Global Variable 

If in a block a local variable of the same name as the global 
variable is declared, the local variable will suppress the global one 
from the declaration line onwards. To access the global variable 

from this block, use unary scope resolution operator "::" in front 
of the identifier. 

  
int x = 10;         // Global variable 

  
int main ( ) 

{  
  int x = 4, y; 

  y = x/ ::x;       // Value should be 0.4 
} 

1.16 1.16       Storage Class 

Each variable or object has its attributes including storage class, 
scope and linkage. 

♦        auto 

Variables of automatic/local storage class are created when the 

block in which they are defined is entered, and destroyed when 
the block is exited. Local variables are by default of automatic 
storage class. So the “auto” specifier is rarely used. 

 



♦        register 

When “register” specifier is placed before an automatic/local 
variable, it is to suggest the compiler to keep this variable in one 
of the computer’s high-speed registers in stead of memory. The 
loading and saving time is shorter than memory. By placing a 

heavily used variable into the register, the total run time can be 
reduced. However, the compiler may ignore this suggestion, if 
there is no register available. On the other hand, today’s 
optimizing compiler are capable of recognizing frequently used 

variables can decide to put them in register without the need for a 
register declaration. 

Not often used. 

♦        static 

If a local variable is declared “static”, it is still only known in the 
function in which they are defined, but when the function is exited, 
that variable is not destroyed, instead it is retained for next use.  

Before the first time of use, if not specially initialized, all numeric 
variables are initialized to zero. 

If there is an initialization in the function such as "static int x = 1;" 
it only works first time the function is called. Otherwise the 

variable can not keep the value of last time and therefore has no 
difference with normal local variables. 

This kind of scope is mainly used by procedural languages. For OO 
it is rarely needed. 

♦        extern 

Global variables (and function definitions) are created by placing 

variable declarations outside any function definition. Global 
variables default to storage class specifier “extern”. They 

keep their values throughout the execution of the program, and 
can be referred by any functions that follows their declarations or 

definitions in the file. According to PLP, the use of global variables 

should be avoided unless there is a special need. 

1.17 1.17       Scope 

♦        File scope 

A physical file is of file class. Therefore, global variables, function 

prototypes and function definitions, which are out of any function 
body, are of file scope. 



♦        Function scope 

Because a function is not the smallest unit in C++, only labels are 
with function scope. Labels are identifiers followed by a colon, i. 
g., the case label “case 3.5: ” in “switch” structure. Labels are 
used in “switch” structure or “goto” statement to mark the location 

of a statement, so that other statement knows where to go. They 
are implementation details that functions hide from one another. 

♦        Block scope 

Because block is the smallest unit in C++, most 

variables/identifiers are of block scope. They are local variables 
declared in a block.  

♦        Function-prototype scope 

Identifiers in the function-prototype declaration have function-

prototype scope. The identifiers can be reused elsewhere without 
ambiguity. This is the lowest scope in C++. 

1.18 1.18       Recursion 

A recursive function is a function that calls itself either directly or 
through other function. There are such kind of problems that the 
direct solution can not be easily expressed, but the relationship 
between the problem and its simpler version is explicit. Thus the 

problem can be simplified repeatedly reduced to a smaller version, 
until it reaches the simplest case called "base case", and finally 
becomes known. In short, recursion keeps producing simpler 
version of the original problem until the base case is revealed. 

From logical point of view, recursion is invalid or impractical: you 
can not use an unknown solution to solve a problem. But in C++ 

recursion only means to make another copy of the function and 
call it again. So recursion in C++ is not real recursion. Therefore it 

is simple. 

A smart use of recursion on other issues: 

  

int main() 
{ 

   int c; 
  

   if( ( c = cin.get() ) != EOF) 
   { 

      main( ); 
      cout << c;   

   } 



  

   return 0;  
} 

♦        Recursion & iteration 

All recursive solutions can be substituted by iterations. Iteration 
solutions are better than recursion in respect to performance, 
because recursion produces a series of function calls and copies of 

variables, thus takes more overhead, which iteration can avoid. 
Recursion is only good when it can mirror the real-world problem 

more naturally, thus the program is easier to understand and 
debug. 

♦        Exponential complexity caused by recursive calls 

If in a recursive function there are three recursive calls, and 

number of recursion layers is n, then the total of recursive calls 
will be 3n. This is called "exponent explosion". Try to avoid this 
situation. 

1.19 1.19       Recursion Exercise 1 – Binary Search of an Array 
  

#include <iostream> 
#include <math> 

#include <stdlib> 
  

void bisearch (const int number, int & location, const int 
array[],  

         int from, int to); 
  

int main () 
{ 

   const int asize = 13; 
   int location, temp; 

   int student [asize] = {0,1,2,3,4,5,6,7,8,9,10,111,222}; 

   bisearch (7, location, student, 0, asize-1); 
  
   if(location < 0) 
      cout << "The number " << number << 

              " is not in this array." << endl; 
   else 
      cout << "The "<< location << "th element contains your 

number " 

           << number << endl << endl; 
  



   return 0;  

} 
  

  
void bisearch (int number, int & location, int array [], int from, 

int to) 
{ // ********** Base Case ************ 

   int middle = (from + to) / 2; 
  

   if(array[middle] == number) 
   { 

      location = middle; 
      return;   

   } 
  

   if( ( number > array [to]) || ( number < array [from] ) ) 
   { 
      location = -1; 

      return;    
   } 

  
   if(middle == from) 

      if(array[to] == number) 
      { 

         location = to; 
         return;     

      } 
   else 

   { 
      location = -1; 

      return;   

   } 
  
   // ********** Recursion ************* 
   if( number > array [middle]) 

      bisearch (number, location, array, middle, to); 
   else 
      bisearch (number, location, array, from, middle); 
  

   return;  
} 

1.20 1.20       Recursion Exercise 2 – Towers of Hanoi 
  



#include <iostream> 

  
void hanoi (char, char, char, int); 

  
int main ( ) 

{ 
   int n = 4; 

   hanoi ('a', 'b', 'c', n); 
   cin >> n; 

   return 0;  
} 

  
void hanoi (char from, char via, char to, int n) 

{ 
   if(n==1) 

   { 
      cout << from << " => " << to << endl; 
      return;  

   } 
  

   n--; 
   hanoi (from, to, via, n); 

   cout << from << " => " << to << endl; 
   hanoi (via, from, to, n); 

   return;  
} 

1.21 1.21       Order of Evaluation on Operands 
  

a = function1 (a, b) + function2 (c, d); 

In C++ the order of evaluation of the two operands beside some 

operators such as "+" is indefinite. If the result of the calculation 

depends on the order of evaluation of the two operands i. e. the 
calling order of the two functions - it is a lousy design indeed - 
then the result will be indefinite. 

1.22 1.22       Constant Variable 

To put "const" qualifier in front of a parameter in both the 
function prototype and function definition is to tell the 
compiler that the function doesn't modify the variable. A constant 
variable or pointer should be initialized when declared. 



1.23 1.23       Principle of Least Privilege (PLP) 

The principle of least privilege is to always assign least data 
accessing privilege to the program. In most cases it is achieved by 
using of qualifier "const". "const" is used to pass variables and 
arrays to functions in which they should not be modified. It is also 

used to define a local variable that shouldn't be changed. Any 
attempt to modify the constant variable will be checked out by 
compiler before the program is run. Using this principle to properly 
design software can greatly reduce debugging time and improper 

side effects, and can make a program easier to modify and 
maintain.  

1.24 1.24       Inline Functions 

Some functions are of quite small size, but quite frequently called. 

Compared with the function call overhead, the program size 
reduced by not repeatedly include the block of statements may be 
trivial. In these cases we put "inline" qualifier in front of the 

function definition to tell compiler to insert the body of the called 
function into the calling function to avoid a call. 

When the inline function is changed, all functions that call it 
should be re-compiled. 

Keyword inline is specially useful for wrapper classes. 

1.25 1.25       Reference 

There are two ways to pass arguments to called functions in many 
languages: "call-by-value" and "call-by-reference". 

♦        call-by-value 

When an argument is passed by value, only a copy of the 
argument is passed to the called function.  The copy constructor of 
the passed object is called to make the copy, requiring extra 

overhead.  The original values are untouched. This is good for data 
security, but bad for performance.  

♦        call-by-reference 

A reference is declared by putting "&" in front of the identifier in 
the function header. A reference is not a variable. It is just an 

alias of a variable.   

When we talk about a variable, it is actually the address of one 
memory cell used to hold different values.  In machine language 
we would directly use the address to represent the variable, but in 

high-level languages identifiers are used to present addresses.  So 



when we write 

  
int a = 33; 

we actually created an alias to represent the address of a memory 
cell holding the value of 33.  When compiler sees “a”, it just 

converts it to the corresponding address.  

Therefore, when we write 

  
int & b = a; 

we just created another alias for that address.  Now for the same 
address we have two alias: “a” and “b”. Although "b" is created 

"out of" a, but once created they are equal. 

Therefore, when a object is passed by reference, a new alias is 

created in the called function to refer to the address of that object.  
With this alias the called object can do anything directly to the 
object itself. 

  
void double(int & x)  // function definition indicating the 

reference 
{  x * = 2; } 

  
int main ( ) 

{ 
   int a = 3; 

   double(a); 
} 

♦        Comparison between call-by-value, call-by-reference 
and call-by reference with pointer 

  Call-by-

value 

Call-by-

reference 

Call-by-

reference with 
pointer 

call sum(a, b); sum(a, b); sum(&a, &b); 

prototype int sum(int 
a, int b) 

int sum(int &a, 
int &b) 

int sum(int * ptr1, 
int * Ptr2) 

From the above form you can see that the most explicit expression 
is call-by-reference with pointer.  The calling statement of call-by-
reference is the same as call-by-value, therefore the programmer 

may forget that he is calling by reference. 



1.26 1.26       Default Arguments 

When the arguments you pass to the called function are most 
probably of some definite values, you can specify these values in 
the function prototype. When the values of the parameters are the 
default ones, you can omit the parameters. 

  
void count(int x = 1, int y = 1, int z = 1) 
{...} 
  

int main ( ) 
{ 
   count();         
   count (2, 3);  

} 
  

Only the rightmost arguments can be omitted -- you can not 

provide the 1st and 3rd argument and omit the middle one. 

1.27 1.27       Overloading Functions 

Functions with the same name but different signature (i.e. 
argument list) are called overloaded functions. Overloaded 

functions are recognized by the compiler through the argument list 
in the call: 

  
#include <iostream> 

  
void print(int i) 
{ 
   cout << "int i = " << i << endl; 

} 
  
void print(char c) 

{ 
   cout << "char c = " << c << endl; 

} 
  
int main() 
{ 

   int i = 1234; 
   char c = 'C'; 
   print(i); 
   print(c); 

   cin >> i; 



} 

1.28 1.28       EOF 

An integer constant defined in the "iostream.h" header file. It is a 

system-dependent keystroke combination. For example, in MS-
DOS it is “Ctrl-Z”, while in UNIX it is “Ctrl-D”. In other system it 

may be “EOF” or even “Stop here!”. The value of EOF in ANSI 
standard is a negative integer value, normally –1. In Borland C++ 

it is also –1. 

1.29 1.29       New Line 

A new line is regarded as a character in C++: “\n”. You can use 
such statement to detect a Return: 

  
if(c = = ‘\n’)… 

  



2. 2.         PRIMITIVE TYPES AND OPERATORS 

2.1 2.1          Modulus Operator % 

It yields the remainder after integer division. This calculation has 

the same priority as manipulation and division. 

2.2 2.2          Conversion Between Different Types in 

Calculation 

In the calculation of different types of variables, C++ promotes 

the lower-level variable to higher-level variable, and the result is 
higher-level. For example, the result of int with float is float. 

2.3 2.3          Do Not Rely On the Precision of Float Numbers 

Floating-point numbers are represented only approximately in 

most computers. So do not compare floating-point values for 
equality. Instead, test whether the absolute value of the difference 

is less than a specified small value. 

2.4 2.4          Assignment Operators 
  

c += 7 c = c + 7 
c -= 7 c = c – 7 

c *= 7 c = c * 7 
c /= 7 c = c / 7 

c %= 7 c = c % 7 
a = ++b b = b + 1, then a = b 

a = b++ a = b, then b = b + 1 
a = --b b = b – 1, then a = b 

a = b-- a = b, then b = b – 1 

“++b” or “b++” can either be used as a operand in a expression, 
or as a independent statement. Using assignment operator can 
save a bit of compiling and running time. It is useful when the 

statement is in a loop which will be run many times. 

2.5 2.5          Value of Assignment Expression 

Because “=” operator operates from right to left, such 

expression can be used: a=b=c=d=3. An assignment expression 
itself also has a value:’ 

  
if( (a = cin.get( ) ) != “a”)… 



2.6 2.6          The Integer Value of Character 

The integer value of a character is its ASCII code, for example, 
97 for ‘a’, 98 for ‘b’, 99 for ‘c’,... To acquire this value, use 
variable type converting operator “static_cast < >”: 

  

#include <iostream> 
#include <iostream> 
int main () 
{  char keyboard; 

   int a; 
   do 
   {  cout << "Enter one character, and I will tell you its ASCII: 

\n \n"; 

      cin >> keyboard; 
      cout << (a = static_cast <int> (keyboard)) << endl <<"\n 

\n \n \n"; 

   }while (a != 101 && a != 69); 
   return 0; 

} 

2.7 2.7          Logic Operators 

&&: AND 

||: OR 

!: Logic Negation, turning the value of a logic expression from true 
to false or from false to true. 

  



3. 3.         CONTROL STRUCTURES 

3.1 3.1          Control Structures 

C++ has only seven control structures: 

Sequence 

Selection “if” single-selection structure 

Selection “if/else”  double-selection structure 

Selection “switch” multi-selection structure 

Repetition “while” 

Repetition “do/while” 

Repetition “for” 

3.2 3.2          if 

  
if( grade >= 60 ) 

  cout << “Passed! \n”; 

3.3 3.3          if-else 
  

if( grade >= 60 ) 
   cout << “Passed! \n”; 

  else if( grade >= 40 ) 
   cout << “Failed! \n”; 

  else 
   cout << “Shamed! \n”; 

3.4 3.4          Conditional Operator 

Conditional operator “?” and “:” are used to form an operand or 

statement, the value of which is chosen from two options, 
depending on the value of the condition expression: 

  
condition expression ? option 1 : option 2; 

Example: 
  
cout << ( grade >= 60 ? “Passed! \n” : “Failed! \n”); 

grade >= 60 ? cout << “Passed! \n” : cout << “Failed! \n”; 

3.5 3.5          while 

  
while ( condition expression ) statement; 



If the condition expression is true the statement will be 

performed, and the condition expression checked again. If there is 
no action in the statement to cause the condition expression to 

become false eventually, it will cause a “infinite loop”. 

“while” structure actually is an “if” structure with a “go to” 

statement at the end to go back to “if”. 

3.6 3.6          for Loop 

  
for(expression 1; expression 2; expression 3) 

  statement 

expression 1: initialize the loop’s control variable; 

expression 2: loop-continuation condition; 

expression 3: increment the control variable. 

As a complete loop, first the condition is checked, if satisfied, the 
statement is executed, then the control variable is incremented. 

Example: 

  
for( int n = 1, m = 1, counter = 1; counter <=10; counter = 

counter +2) 
  cout << counter << endl; 

Notice that after the loop the variable “counter” will have a value 
of 12.  

Expression 1 and 3 can be lists of comma-separated expressions. 
The comma used here are “comma operators”. The value of the 

list is the value of the last expression. It is usable when you need 
more than one local variable in the loop. By initializing these 

variables inside the loop instead of outside the loop, it 
makes the program clearer, and also conforms with the 
Principle of Least Privilege (PLP). 

If expression 1 is missing from the “for” header but it has been 
initialized before the loop, the value will be used. If expression 2 is 

missing, the continuation condition will be by default true and the 
loop will run infinitely. If the control variable is incremented in the 

loop body, then expression 3 can be saved. Anyway the colon can 
not be saved. 

Many programmers prefer expression 3 to be “counter ++”, 
because increment occurs only after the loop body is executed. 



3.7 3.7          Avoid Modifying the Control Variable in the Loop 

Body 

It is not a error but it can produce unexpected results. 

3.8 3.8          switch 
  

switch (controlling expression) 
{   

   case a: 
   case b: 

   statements; 
   break; 

   case c: 
   statements; 

   break; 
   default: 

   statements;  
} 

a, b, c are called “case labels”. They can only be a constant, or a 

character represented by ‘a’ or ‘A’. When “switch” statement is 
executed, the case labels are one by one compared with the 

controlling expression. When one is equal to the expression, all 
the statements after that case label will be executed, until meeting 

one “break” statement. So putting different labels together simply 
means “OR”. 

If a “default:” label is put, when no case label is matched, the 
statements after the “default:” label is executed. It is not a must 
but a good practice to always put a “default” label even if you are 
absolutely sure your program is free of bugs. 

A “break” statement is not required after the “default” case if it is 
at the last. 

3.9 3.9          do-while 

  
do 

{  statement1; 
   statement2;  
}while (continuation statement); 

The only difference between this and “while” statement is that the 
continuation condition is checked after the body had be executed. 

  

#include <iostream> 



  

int main () 
{  char keyboard; 

   int a; 
   do 

   {   
      cout << "Enter one character, and I will tell you its ASCII: 

\n \n"; 
      cin >> keyboard; 

      cout << (a = static_cast <int> (keyboard)) << endl <<"\n 
\n \n \n"; 

   }while (a != 101 && a != 69); 
   return 0; } 

If we use “while” we have to add one statement before the loop: 
“a=0;”. 

3.10 3.10       “break” and “continue” 

In the body of “while”, “for”, “do/while” or “switch”, “break” 
statement causes immediate exit from the statement, while 

“continue” skips the statements after it until the end of loop, and 
begins as normal the next loop. 

Notice that break can only exit one layer of loop. If there are more 
than one layers of nested control structure, break can not exit all 
of them: 

  

int main() 
{ 
   fstream file1("test.txt", ios::out); 
   int i, j; 

  
   for (i = 0; i < 10; i++) 
   { 

      file1 << "Outer loop: i = " << i << endl; 
  

      for (j = 0; j < 10; j++) 
      { 
         file << "Inner loop: j = " << j << endl; 
         if(i == 3 && j == 3) break; 

      } 
  
      file1 << endl; 
   } 

  



   file1.close(); 

   cin >> i; 
} 

In this case, a unstructured programming technique goto can be 
used. 



4. 4.         ARRAYS 

4.1 4.1          Declare and Initialize Array 

To initialize the array when declaring: 

  
int x, y, student[5] = {0, 1, 4, 9, 16}; 

The numbers in {} are called initializers. If the number of 
initializers are less than the number of the array elements, the 

remaining elements are automatically initialized to zero. There 
must be at least one initializer in the {}. But such kind of 

expression can only be used in declaration. You can’t use “ 
{0, 1,..} ” in assignment. 

4.2 4.2          Array Size Must Be Constant 

Instead of directly placing a figure such as "21" in the braces of 

the array declaration, it is better to place a constant variable. In 
such way when you need the change the array size you only need 

to change one place. 
  
const int size = 21; 

The other reason is to avoid “magic number”: if number 21 
frequently appears in the program, and an other irrelevant “21” 

happens to appear, it will mislead the reader that this “21” has 
something to do with the former one. 

Only constant variable can be used as array size. Therefore 
you can not make the array size dynamic by inputting an integer 

from keyboard in run time and use it as array size.  

4.3 4.3          Array Size 

In Java, an array is an object with an array with fixed-size, plus 
data member ("length") indicating the array size, and compiling-

time boundary checking. But in C++ an array is just an address of 
the first array element. Declaring the size of the array can only 
help compiler to allocate memory for the array, but the compiler 

never checks whether the array bound or size is exceeded: 
  

int main () 
{ 
   int b, a[3] = {0,1,2}; 
   a[3]=3; 

   cout << "a[3] = " << a[3] <<endl;  



   a[4]=4; 

   cout << "a[4] = " << a[4] <<endl; 
   cin >> b;   

} 

The problem that will happen if you exceed the array bound is: 

because the compiler was told that the array was only of 3 
elements, so it may have put other variables in the succeeding 
memory locations. Therefore by declaring an array of 3 elements 
then putting a value into the 4th element, you may have 

overwritten another variables and produced very serious logic 
errors which is very difficult to find out. 

Therefore, the size of an array should be carefully observed. 

4.4 4.4          Array and Pointer 

There are two widely used formats to represent a block of data: a 
pointer and an array: 

  

char * cPtr; 
char buf[80]; 

The name of an array is a constant pointer to the first element of 
the array. Therefore, the name of a charcter array is equal to 

const char *. You can not assign anther address to the array 
name like 

  
buf = cPtr; 

The other difference between a pointer and array is: a pointer 
such as char * cPtr can point to anywhere, most probably 

somewhere in the OS's territory that you can't access. An array 
such as char buf[80] however, points to a block of memory 
allocated by the compiler. 

If a block of characters ends with NULL i.e. 0, it can be treated as 
a string, which is recognized in most applications.  

♦        Double-quoted constant string 

A double-quote enclosed string represents a const char const * 

pointing to some compiler-allocated space holding the string, with 
the last character being NULL. Therefore, when you say 

  
char * cPtr; 

cPtr = "Hello world!"; 

Compiler will allocate a continuous 13 bytes (last byte to hold 



NULL or 0) some where, set them to be "Hello world!", and assign 

its address to pointer cPtr. Because the bytes are constant, you 
can never amend the content of the string. 

Therefore, if you want to amend the content of "Hello world!", you 
can not directly assign its address to a pointer. You have to copy 

the constant bytes into a character array: 
  
char str[100]; 
strcpy(str, "Hello world!"); 

char * substr = strstr(str, "world"); 
memcpy(substr, "W", 1); 
msg(str); 

The output will be 

  
Hello World! 

A special case is when you initialize a character array with the 
constant string: 

  

char buf[80] = "Hello world!"; 
char buf1[] = "Hello Frank!"; 

Compiler will create a character array of the specified length or the 
length of the constant string if not specified, than fill it with the 

content of the constant string. You can then amend the content of 
the array later. 

However, you can not assign a constant string to an array name 
after it is already created: 

  
char buf[80]; 

buf = "Hello world!"; // Not allowed! 

Because as said before, the array name is a constant pointer 

which can not be assigned. 

♦        Formatting character array 

When you create a char array by saying 

  
char buf[80]; 

every byte of it is uninitialized. So it is not a NULL-terminated 
string and can not be used in string manipulation functions such as 
strcpy, strlen, strcat, etc. To turn it into an empty but legal 
string: 

  



sprintf(buf, ""); 

To write into a char array: 
  
sprintf(buf, "%s, %.6d, %c, %.3f, 0x%.8x",  
        "Hello World!", 1234, 'A', 123.4, 0xaabbbb); 

The output will be: 
  

Hello World!, 001234, A, 123.400, 0x00aabbbb 

For a list of all format specifications, search MSDN with title 

"Format Specification Fields: printf and wprintf Functions". 

4.5 4.5          Pass Array to Function 

  
int calculate (int member[], int size) 

{ 
   int i, average = 0; 

  

   for( i = 0; i < size; i++) 
      average += member [i]; 
  
   average /= size; 

   return average;  
}  
  
int main ( ) 

{ 
   int average, student [5] = {67, 93, 88, 89, 74};  
   average = calculate (student, 5);  
   cout << "The average score is " << average << endl; 

   cin >> average; 
   return 0;  
} 

To indicate to the compiler that a function is expecting an array, 
there must be “[ ]” following the array name in both the function 
prototype and function definition. 

C++ automatically passes arrays by reference. Dereferencing 

operator “&” is not used, because the name of the array is the 
address of the first array element - the name of array "student" is 

equal to "&student[0]".   

4.6 4.6          Searching Array 

There are two ways to search for a figure in an array: 



Linear search: compare each array element one by one with the 

searched figure until it is found or reaching the end of the array. 
Average comparison time: half of the array size. 

Binary search: can only be applied on sorted array. By checking 
the middle element you will find out which half of the array 

contains the element. Maximum comparison time: log n 
arraysize. If 

an array needs to be searched frequently, then it is worthwhile to 
spend a great time to sort it first. Refer to the program in “3.11 
Exercise – Binary Search of an Array”. 

4.7 4.7          Multiple-Subscripted Array 
  

#include <iostream> 
  

void print (int [] [3], int, int); 
  

int main ( ) 
{ 
   int x; 

   int array1 [2] [3] = { {1, 2, 3}, {4, 5, 6}}; 
   int array2 [2] [3] = {1, 2, 3, 4}; 

   print (array1, 2, 3); 
   print (array2, 2, 3); 

   cin >> x; 
   return 0; 

} 
  

void print (int a [] [3], int first, int second) 
{ 

   for(int i = 0; i < first; i++) 
   { 

      for(int j = 0; j < second; j++) 

   cout << a [i] [j]; 
  
      cout << endl;  
   } 

  
   return;  
} 

♦        Declaration of the dimensions 

When passing the array to a called function, each dimension of the 
array should be declared in both the function prototype and 

function definition. The first dimension does not need a number, 



just like single-dimension arrays, but the subsequent dimensions 

does. 

An n x 3 array is located in the memory in such a sequence: (0, 0) 
(0, 1) (0, 2) (1, 0) (1, 1) (1, 2)... If the compiler knows the 
number of columns which is 3, it will put the fist element (0, 0) of 

first row on the first memory location, the first element on second 
row on the fourth memory location, the first element on third row 
on the 7th location,...Without the number of columns the compiler 
is not able to organize memory for the array. 

♦        Initializers 

The initializers of an array can work in two ways:  

initializers for each row are enclosed in second class of “{ }”; 

all initializers are enclosed in only one “{ }”, and apply to 

elements first by row then by column. 

4.8 4.8          String Handling Functions 

Their function prototypes are in "string.h" header file. Data type 

“size_t” used in these functions is an unsigned integer type.  

char * strcpy(char * s1, const char * s2) copy s2 into s1 

char * strncpy(char * s1, const char * s2, size_t n) copy n of 
s2 into s1 

char * strcat(char * s1, const char * s2) append s2 to s1 

char * strncat(char * s1, const char * s2, size_t n) append n of 

s2 to s1 

int strcmp(const char * s1, const char * s2) compare s1 with 

s2. Return positive, 0 or negative 

int strncmp(const char * s1, const char * s2, size_t n)
 compare n of s1 with s2 

char * strtok(char * s1, const char * s2) break s1 into tokens 

separated by s2 

size_t strlen(const char * s) length of s, not counting 

NULL 



5. 5.         POINTERS AND STRINGS 

5.1 5.1          Pointer Declaration and Initialization 
  
int x, y, qty, *xPtr1 = 0, *yPtr1 = NULL, *qtyPtr1 = &qty; 
float z, *zPtr1 

zPtr1 = &z; 

Pointer variable xPtr1, yPtr1, zPtr1 and qtyPtr1 are variables 

containing the addresses of another normal variables. “ * ” 
indicates that the following variable is a pointer. “ int * ” indicates 

that the following variable is a pointer pointing to an integer. 
When used in type declaration, function prototype or function 

definition, “*” is not a dereferencing operator. 

"NULL" is defined as 0 in <iostream> and several standard 

library header files. A pointer with a value of 0 points to nowhere. 

5.2 5.2          Casting Between Numeric Address and Pointer 

You can acquire the numeric address contained in a pointer and 
vice versa through casting between the integer type and the 
pointer type: 

  
typedef unsigned long       DWORD; // each unsign char takes 

four byte 
typedef unsigned char       BYTE;  // each unsign char takes one 

byte 
  

struct Any { 
    BYTE m_ba1[100];  

    BYTE m_ba2[100]; 
    BYTE m_ba3[100]; 

}; 
  

void main() 

{ 
    Any * pAny = new Any; 
    DWORD dwBase = (DWORD)pAny;  // casting pointer to 

DWORD address 

    cout << “Offset of m_ba1 is “ << (DWORD)pAny->m_ba1 – 
dwBase << endl; 
    cout << “Offset of m_ba2 is “ << (DWORD)pAny->m_ba2 – 

dwBase << endl; 



    cout << “Offset of m_ba3 is “ << (DWORD)pAny->m_ba3 – 

dwBase << endl; 
  

    ::memset(pAny1->m_ba3, 123, 100); 
    Any * pAny2 = (Any *)(dwBase + 200);  // casting 

DWORD address to pointer 
    cout << "pAny1 offset by 200: m_ba1[23] = "  

         << (int)(pAny2->m_ba1[23]) << endl; 
} 

Output will be: 
  
Offset of m_ba1 is 0 
Offset of m_ba2 is 100 

Offset of m_ba3 is 200 
pAny1 offset by 200: m_ba1[23] = 123 

5.3 5.3          Constant Pointer  and Pointer to Constant 

A pointer can be pointed to a constant, and the pointer itself can 
also be a constant. If a pointer is a constant pointer, it should be 

initialized when declared, and it can not be pointed to any other 
variable. 

Suppose p1 is a pointer pointing to a “Person” object.  There are 
three kinds of use of “const”: 

print(Person * const p1)    pointer is constant but object is not. 

print(const Person * p1)    object is constant but pointer is not 

print(const Person * const p1)    both the object and the pointer 
are constant 

5.4 5.4          Pass Pointer By Reference 

If we want to pass a pointer to a function and modify that pointer 

in the function, we can not say 
  
Type * ptr = new Type; 

Test(ptr); 
  

void Test(Type * ptr0) 
{...} 

Because the pointer is passed by value, and the original pointer 
"ptr" will keep unchanged even if you change the "ptr0" in the 
function.  You have to pass the pointer by reference: 

  



Test(&ptr); 

  
void Test(Type ** ptr0) 

{ 
   (*ptr0) = &x; 

   ...  
} 

In this way you can use “ (*ptr0) ” to access the original pointer 
"ptr". 

5.5 5.5          Receive array with pointer 

When passing the name of an array to a called function, the name 
of array is an address of the first element. Because of this, a 
pointer can be used in the called function to receive the array. 

Then by moving the pointer (e. g. pointer ++), all the rest array 
element can be accessed. 

5.6 5.6          Pointer Expressions and Arithmetic 

There are three kinds of arithmetic operations that can be done to 
a pointer: 

♦        Increment 

pointer ++ / --; 

pointer += / -= 3;  

It means moving the pointer to the next or previous 3rd 
element, not just increase the value of the pointer by 3. If 
the size of the variable to which the pointer is pointing to is 4, 

then actually the value of the pointer will be increased by 3 x 4. 

♦        Difference 

int x = pointer2 – pointer1; 

If pointer1 is pointing to the 5th element and pointer2 the 8th, 

then x will be 3, not 3x4 (suppose the type size is 4). 

♦        Assignment 

pointer1 = pointer2; 

pointer1 and pointer2 must be of the same type, otherwise a cast 
operator must be used to convert the type of the pointer. The only 

exception is when pointer1 is declared to be type “void” (i.e., 
void *). Any type of pointer can be assigned to a pointer to void 
without casting. However, it can not be conversed. 



♦        Comparison 

The two pointers for comparison must be pointing to the same 
array. The result may show which one is pointer to a higher-
numbered element. 

Pointer arithmetic (including increment and difference) is 
meaningless unless performed on one array, because we are only 
sure that array elements are located one after another. We can 

not assume two separate variables are put together in the 
memory. 

The following four expressions is doing the same thing: 
  

cout << array[4]; 
cout << *(array + 4); 

cout << arrayptr1[4]; 
cout << *(arrayPtr1 + 4); 

5.7 5.7          Pointer Offset and Subscription 

The reason pointer concept is created initially is not to point to a 
single primitive, but to manipulate arrays and strings and custom 

types. 

When a pointer is pointed to an array or a string, it is actually 

pointed to the first element of the array (subscription 0).  To 
refer to the elements in the following array, a pointer offset or 

subscription can be used: 
  

int b[5]; 
int * ptr = b; 

*(ptr + 3) = 7; 
// or ptr[3] = 7; 

*(ptr+3) refers to the element with subscrip 3 (4th element).  This 
element can also be represented by ptr[3]. 

If you point a pointer to the middle of an array, what will 

happen?  The pointer can be used as the name of a new array, 
whose first element is the element to which the pointer is pointing 
to.  

  

#include <iostream> 
#include "conio.h" 
  
int main() 

{ 



   char * a1 = "0123456789"; 

   int a2[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; 
   char * ptr1 = &a1[3]; 

   int * ptr2 = &a2[3]; 
   cout << "ptr1[0] = " << ptr1[0] << ",  ptr1[6] = " << 

ptr1[6] << endl; 
   cout << "ptr2[0] = " << ptr2[0] << ",  ptr2[6] = " << 

ptr2[6] << endl; 
   cout << "\n Press any key to quit..." << endl; 

   getch();   
} 

Output result: 
  

ptr1[0] = 3,  
ptr1[6] = 9 
ptr2[0] = 3,  

ptr2[6] = 9 

5.8 5.8          "sizeof" Operator 

C++ provides unary operator "sizeof" to determine the number of 
bytes occupied by an array, variable, constant or type name such 

as "int", "char", etc.  When applied to type name, "( )" is needed: 
  

int a, b, n; 
float x, array [3]; 

a = sizeof x; 
b = sizeof array; 

n = sizeof array / sizeof (float); 

The last statement is to find the number of elements of an array. 

Notice that the number of bytes for a certain type is different for 
different systems. C++ is platform-dependent, not like Java. 

5.9 5.9          Size of String and Character Array 

Although a string “char *” and a character array “char [ ]” can be 
used in the same way in most cases, when it comes to size issue, 
they are different. The size of the “char *” is the size of the char 
pointer, while the size of the char array is the size of the array: 

  
char * temp1 = "abcdefg"; 
char temp2[20] = "abcdefg"; 
char temp3[30] = "abcdefg"; 

cout << "Size of a char * is " << sizeof temp1  



     << ", size of char[20] is " << sizeof temp2  

     << ", size of char[30] is " << sizeof temp3 << endl; 

Output will be: 
  
Size of a char * is 4, size of char[20] is 20, size of char[30] is 

30 

5.10 5.10       Function Pointer and Call Back Technique 

Function pointers are mainly used to achieve call back technique, 
which will be discussed right after. 

Just like an array name is the address of the first array element, a 
function name is a actually the starting address of the function 

code. A function pointer holds the address of a function, just like a 
float pointer holds the address of a float variable.  A function 

pointer can point to either a global function or a class function. 

♦        Global function pointer 

  
#include "stdafx.h" 
  

typedef void(*CALLBACK_FUNCTION)(int);  // define the 
function pointer 

  
void Bark(int nRepeat)  // actual function to be passed to the 

pointer 
{ 

    for(int i = 0; i < nRepeat; i++) 
        printf("Bark!\n"); 

} 
  

void Cry(int nRepeat)  // actual function to be passed to the 
pointer 

{ 

    for(int i = 0; i < nRepeat; i++) 
        printf("Woooo!\n"); 
} 
  

void Server(CALLBACK_FUNCTION m, int nRepeat) 
{ 
    (*m)(nRepeat);  // Invoking through function pointer 
    printf("\n"); 

} 
  



int main(int argc, char* argv[]) 

{ 
    Server(&Bark, 2);  // passing function pointer 

    Server(&Cry, 3); 
    return 0; 

} 
  

Bark! 
Bark! 

  
Woooo! 

Woooo! 
Woooo! 

♦        Class method pointer 
  
#include "stdafx.h" 

  
class Creature {}; 

  
typedef char * (Creature::*CALLBACK_METHOD)(int); // 

define the function pointer 
  

class Cat : public Creature { 
public: 

    Cat(char * name) : m_name(name) {} 
  

    char * Miao(int nRepeat)  // actual function to be passed 
to the pointer 
    { 
        for(int i = 0; i < nRepeat; i++) 

            printf("Miao!\n"); 

        return m_name; 
    } 

  
private: 

    char * m_name; 
}; 

  
class Snake : public Creature { 

public: 
    Snake(char * name) : m_name(name) {} 

  
    char * Ssss(int nRepeat)  // actual function to be passed 

to the pointer 



    { 

        for(int i = 0; i < nRepeat; i++) 
            printf("Ssss!\n"); 

        return m_name; 
    } 

  
private: 

    char * m_name; 
}; 

  
  

void Server(Creature * pCreature, CALLBACK_METHOD m, 
int nRepeat) 

{ 
    char * name = (pCreature->*m)(nRepeat); // invoking 

through function pointer 
    char buf[80]; 
    sprintf(buf, "My name is %s!\n\n", name); 

    printf(buf); 
} 

  
int main(int argc, char* argv[]) 

{ 
    Cat * pCat = new Cat("Jessy"); 

    Snake * pSnake = new Snake("John"); 
    Server(pCat, (CALLBACK_METHOD)&Cat::Miao, 2);  // 

passing function pointer 
    Server(pSnake, (CALLBACK_METHOD)&Snake::Ssss, 3); 

    return 0; 
} 

  

Miao! 
Miao! 
My name is Jessy! 
  

Ssss! 
Ssss! 
Ssss! 
My name is John! 

♦        Call Back Technique 

Callback technique is an effort to seperate “what” from “how”. 

When you want your program to be applicable to  different use 
cases, you may find that at a certian point in your program, you 



need to invoke a function which has the same signature but 

different implementation for different use cases. In other words, 
for every specific case, the type of information passed to and 

returned by that function (which represents “what”) is the same, 
but the implementation of the function (which represents “how”) is 

different. Different client (who uses your program) may have 
different implementations. 

In this case, you have to provide a mechanism so that the client 
may register his own version of that function to your program 

before the invoking point, so that your program knows which one 
to call. This technique is called “callback”. 

There are three ways to achieve call-back. 

The OO approach of callback is to let the client class inherit from 

and implement an interface. In your code you simply hold an 
interface pointer and call the interface methods through that 

pointer. The client program will create his implementation object, 
assign its pointer to the interface pointer in your class before the 
calling pointer in your class is reached. 

However, if the client class is already finished and did not 
implement the interface you want, you have to use a less OO 

approach. The client programmer (or your do it for him) should 
write a separate matching class for the client class, which inherit 

from the desired interface with the function you will call back, 
which provides the service you need by manipulating client-class 

objects. In your code you have a pointer to the interface and 
invoke the service provided by the separate class.  

The least OO approach is to use function pointers like the above 
example. 

5.11 5.11       Array of Function Pointer and Menu-Driven 
System 

One use of function pointers is in menu-driven systems. The user 

is prompted to select an option from a menu (e.g., 1~5). Each 
option is severed by a different function. Pointers to different 

functions is stored in an array of function pointers. The user’s 
choice is used as a subscript of the array. 

  
int fun1(); 

int fun2(); 
int fun3(); 
int fun4(); 
int fun5(); 



  

int main() 
{ 

   char (*funPtr[3])(int) = {fun1, fun2, fun3}; 
   int choice = 0; 

  
   while(choice != -1) 

   { 
      (*funPtr[choice])();  

      chin >> choice; 
   } 

} 

The limitation this application is that all the functions should have 

the same signature and return type. 

5.12 5.12       Power and Flexibility of Pointers 

Pointers in C++ is a very powerful tool. It is extremely flexible and 

therefore can generate every kind of errors if misused.  

For example, you can only cast an object of a sub-class to its 
super-class. No other casting between user-defined classes is 
allowed. However, pointers to different classes can be cast to each 

other without any restrict. What is passed in the casting is only 
the address. So you can cast a pointer to an integer to a 
Employee-class pointer. Then the Employee pointer will just 
assume that starting from the passed address it can find all 

attributes of Employee class. 
  
class Person { 
public: 

 Person(char * = 0, int = 0, bool = true, char = ' '); 
 void print() const; 
 void doNothing(); 

private: 
 char * name; 

 int age; 
 bool genda; 
 char blood; 
}; 

  
Person::Person(char * n, int a, bool g, char b) 
    : name(n), age(a), genda(g), blood(b) {} 
  

void Person::print() const 



{ 

 cout << name << " " << age << " " << genda << " "  
         << blood << endl; 

} 
  

void Person::doNothing() {} 
  

  
class Employee { 

public: 
 Employee(char * = 0, int = 0, bool = true, char * = 0); 

 void display(); 
private: 

 char * empName; 
 int empAge; 

 bool empGenda; 
 char * empTitle; 
}; 

  
Employee::Employee(char * n, int a, bool g, char * t) 

    : empName(n), empAge(a), empGenda(g), empTitle(t) {} 
  

void Employee::display() 
{ 

 cout << empName << " " << empAge << " " << 
empGenda  

         << " " << empTitle << endl; 
} 

  
  

int main(int argc, char* argv[]) 

{ 
 Derived d1(1234, 5678); 
 Derived d2(d1); 
 d2.print(); 

 cout << endl; 
  
 Person p1("Frank", 34, true, 'O'); 
 Employee e1("Frank", 34, true, "Engineer"); 

  
 Person * p2 = (Person *)&e1; 
 Employee * e2 = (Employee *)&p1; 
  

 cout << "p1 = "; 



 p1.print(); 

 cout << "p2 = (Person *)&e1 = "; 
 p2->print(); 

  
 cout << "\ne1 = "; 

 e1.display(); 
 cout << "e2 = (Employee *)&p1 = "; 

 e2->display(); 
  

 return 0; 
} 

Output will be: 
  

p1 = Frank 34 1 
p2 = (Person *)&e1 = Frank 34 1 
  

e1 = Frank 34 1 Engineer 
e2 = (Employee *)&p1 = Frank 34 1 -?@ 

  

  



6. 6.         CLASS 

6.1 6.1          Class 

Up to this stage we've been mainly talking about issues which are 

common to both procedural (such as C) and OO languages. From 
now on we will talk more about OO issues.  

As a class, it combined the data attributes and the behavior 
attributes of an object together, and formed an object which can 

simulate both aspects of a real-world object.  

To distinguish independent functions such as those string handling 

functions in "string.h" and functions which belong to a class, class 
member functions are thereinafter called "methods". 

The "public:" and "private:" labels are called "member access 
specifiers". All data members and methods declared by the 

"public" specifier are accessible from outside, and all declared by 
"private" are only accessible for methods.  

Actually an object contains only the data members. Methods do 
not belong to any specific object. The belong to the class. All 
objects share one copy of methods.  When you use “sizeof” 

operator on a class or an object you will only get the total size of 
the data members. 

6.2 6.2          Methods of a Class 

If the method is defined inside the class body, it is automatically 

inlined. It may improve the performance, but it is not good for 
information hiding, because the client of the object is able to "see" 

the implementation of its methods. If a method is defined outside 
the class body, you have to use keyword "inline" if you want it to 

be inlined. Only the simplest methods can be defined inside the 
class body. 

To define the method outside the class body, you have to use 
scope resolution operator "::", which we have used before to 

access global variables, when a local variable with the same name 

had been declared. Use "class name::" in front of the method 
definition to make it unique, because other classes may have 

methods of the same name. 

Methods which changes the data members are sometimes called 
"commands", and methods which do not change are called 
"queries".  Separating the commands and queries leads to 

simpler, more flexible and easy-understanding interfaces. 



♦        Call a method  

To call a method, use the object name plus "." plus the method 
name, or a pointer to that object plus “->” plus the method name.  

6.3 6.3          Constructor 

There is a special method with the same name as the class called 

constructor. There is no return type (even not void) for this 
special method. 

Suppose “Test” is a class, the following line 
  

Test t1(35, “Frank”); 

creates a Test object in compile time, assigning its address to “t1”. 

  
Test * ptr = new Test(35, “Frank”); 

"new" is a special method which creates a Test object dynamically 
at run time and returns a pointer to that new object. The returned 
pointer is received by “ptr”. The following lines 

  
int calculate(Test &);  // Function prototype 

  
calculate( Test(35, “Frank”) ); 

Test * ptr = &Test(35, “Frank”);   

create a Test object in compile time, but do not assign a name, 
instead point a pointer or reference to it. 

Default arguments are recommended for constructors so that even 

if no arguments are passed to the object the data members can 
still be initialized to a consistent state.  STL containers requires 

the objects to have default constructors. 

Constructor can be overloaded.  Normally three kinds of 
constructors are needed:  

1. 1.        Default constructor: no arguments; 

2. 2.        Constructor: has all arguments to construct an unique 

object; 

3. 3.        Copy constructor:  has an argument its own type, to 

copy a new object out of it. 

The default constructor and normal constructor can be merged 
into one if the normal constructor uses default arguments.  

If no constructor is provided, the compiler automatically insert a 
default constructor. This default constructor does not perform any 



operation.  So the data members of the object may not be 

consistent. 

Built-in types are not initialized when created. 

♦        User-defined Converters 

Suppose a method has an argument of type "Child", which has an 

one-argument constructor "Child(Parent)". When you call this 
method, if you pass a "Parent" object instead of "Child", the 

compiler will implicitly call the one-argument constructor and 
convert the "Parent" object to "Child". 

  
class Base { 

public: 
   Base(int a) : member(a)  

   { 
       cout << "Base constructor called with " << a << endl;  

   } 
private: 
   int member; 

}; 
  

void test(Base obj1) 
{ 

   cout << "Base object's member = " << obj1.member;  
} 

  
int main() 

{ 
   test(333);   

} 

The output will be: 

  

Base constructor called with 333 
Base object's member = 333 

One-argument constructors are called user-defined converters. 

6.4 6.4          Default Construcotr 

Default constructor is called implicitly when you create an array of 
objects. If you want to have an array of objects that do not have a 

default constructor, the work-around is to have an array of 
pointers and initialize them using operator new. 



6.5 6.5          Copy Constructor 

A copy constructor is not only explicitly called by the programmer 
to create new objects by copying an existing object, it is also 
implicitly called by the compiler to make a copy of an object when 
it is passed by value. If copy constructor is not provided, compiler 

will provide a default copy constructor, which makes default 
memberwise copy, which can not deal with objects with pointer 
members. 

There are two rules for the parameter of copy constructor: 

1. 1.        Copy constructor’s argument can not be passed by 
value. Otherwise the copy constructor call results in infinite 

recursion, because for call-by-value, a copy of the object 
passed to the copy constructor must be made, which results in 

the copy constructor being called recursively. 

2. 2.        The object argument passed to the copy constructor 
must be constant. Otherwise it can not be applied on constant 

object. 

6.6 6.6          Accessing Class Members 

A class’s data members and methods have class scope. 
Independent functions have file scope. 

Data members and methods are directly accessible by other 
methods of the same class. Programs outside a class can only 
access a class’s public members through one of the handles of an 
object: object name, reference to object, pointer to object. 

So two kinds of variables may appear in a method: local variables 
with block scope which is destroyed after the call, and data 

members. 

Public members of a class is designed to be an interface for its 
clients. It is recommended to keep all the data members under 
“private”, and provide for clients public methods to set or get their 

values. This helps to hide implementation details from the clients, 

reducing bugs and improving program modifiability. It also 
simplifies the debugging process because problems with data 

manipulations are localized to either the class’s methods or 
friends. 

Private data members can also be changed by “friends” of its 
class. Because of this, the use of "friends" is deemed by some 

people to be a violation of information hiding. 

Both structures and classes have private, public and protected 



access. Default of classes is private, default for structure is public. 

6.7 6.7          Typical Methods 

♦        Constructors 

Discussed before. 

♦        Access methods 

To allow outside clients to modify private data, the class should 
provide “set” methods. To allow clients to read the values of 

private data, the class should provide some “get” methods. These 
methods are called “access methods”. They can also translate the 

data format used internally during implementation into the format 
for clients. For example, time may be most conveniently 

expressed in seconds (which is the return type of function 
“time(0)”), but clients may very possibly want the format of 

“06:30”. 

♦        Service methods 

These methods provide services for clients. 

♦        Utility methods 

They are only called by other methods, and normally are private.  

♦        Destructors 

Automatically called when an object leave scope to release all 

resources held by the object. The name of a destructor for a class 
is the tilde (~) character followed by the class name. 

Stack memory resources held by the object such as its compiler-
created members are released automatically when the object 

leaves scope or explicitly deleted. A destructor is only needed to 
release resources which can not be automatically released, such as 

dynamically allocated memory (using "new") or network or 
database connection. 

6.8 6.8          Avoid Repeating Code 

Always try to avoid repeating code if they must be kept identical. 

Although writing the same statements again can avoid a method 

call and thus good for performance, it is bad for maintenance, 
because once the program need to be changed both places should 

be changed meantime. Extra attention should be paid to always 
keep them identical. So always use a method call to avoid 

repeating code. 

If you really want to avoid the method call, use “inline” qualifier 



in front of the method definition. 

6.9 6.9          When Constructors and Destructors are Called 

For global objects, constructors are called before any other 

methods including main begins execution.  Destructors are called 
when main terminates or “exit” method is called. 

For automatic local objects, constructors are called when 
execution reaches the point where the objects are declared. 
Destructors are called when the objects leave scope i.e. the block 
in which they are declared is exited. 

For static local objects, constructors are called only first time when 
the execution reaches the point where the objects are declared. 

Destructors are called when main terminates or “exit” method is 
called. 

It is the same in Java. 

6.10 6.10       Default Memberwise Copy and Default 

Memberwise Assignment 

When a copy of an object needs to be made, if no copy 
constructor is provided, a default memberwise copy will happen.  

For objects without dynamic members i.e. pointers, a default 
memberwise copy can do the job.  But for objects containing 

pointers to other objects, a default memberwise copy will only 
point the pointers of the two objects to the same other object. 

This is called shallow copy.  

When assignment operator “=” is used to assign one object to 

another, if no overloaded assignment operator is provided, a 
default memberwise assignment will happen.  It is the same 

as default memberwise copy. 

6.11 6.11       Pass-by-value and Copy Constructor 

Both in C++ and Java, copy constructors are not designed for 
cloning objects explicitly, because copy constructor does not 

support polymorphism.  

In C++, objects are by default passed by value, and when it 
happens, a copy of the argument object is automatically made by 

the compiler for the called method. Therefore, copy constructor is 
a must for any class which needs deep copy that default 
memberwise copy can not achieve. Copy constructor is therefore 
given big importance and becomes one of the four elements of the 

OCF: all classes should provide their properly implemented copy 



constructors.  

In Java, because all objects are passed by reference and the 
language even does not support automatic pass-by-value, there is 
no need for enforcement of copy constructors. For the purpose of 
cloning objects, Java provides a more robust and automated 

facility – the clone mechanism.  

6.12 6.12       Copy Constructor vs. Factory Method 

A factory method is a method which uses dynamic memory 
allocation to clone itself and return a pointer to the new copy. 

Suppose you have a abstract class Shape and a series of derived 
concrete classes such as Circle, Square, Rectangle, etc. A factory 
method of Circle looks like 

  

Shape * clone() 
{ 
   return new Circle(*this);  // calling copy constructor  

} 

Copy constructor can not be used to clone objects in case of 
polymorphism. This is true in both C++ and Java, because copy 
constructor does not support polymorphism.  

Suppose you have a method which receives a concrete-class 
object with a Shape handle and do something on it. Now if you 

want to make a copy of it in that method, with a factory method 
you can say 

  
public void modifyAndDisplay(Shape * obj) 

{ 
   Shape obj1 = obj. clone(); 

  ... 
} 

If the passed argument is a Circle, the Shape pointer “obj” will get 

a Circle, if it’s Square, you will get a Square. But if you say 
  

   Shape obj1 = new Shape(obj); 

because copy constructor can only produce and return an object of 
its own type, you will only get a Shape object. You will lose all 
information of the derived-class part of data. 

  



6.13 6.13       Various Places to use “const”: Data  Member, 

Method, Argument and Return type 

♦        Constant data member 

When a data member is declared "constant", it must be initialized 
meantime. It can not be modified, and only constant methods can 
access it. Non-constant methods can not access constant 
members, even if they do not modify the objects.  

Declaring an object to be constant not only can prevent it from 
being modified, it is also good for performance: today's 

sophisticated optimizing compilers can perform certain 
optimizations on constants, but can not do it on variables. 

♦        Constant argument of a method 

Declaring an argument “const” will prevent the method to modify 

it. If you return this constant argument back, but did not declare 
the return type constant, the compiler will complain. 

♦        Constant return type of a method 

It is meaningless to declare the return type constant if it is return 
by value. Declaring the return by reference constant is to prevent 

the client from accessing the private data member through the 
reference. If a method returns one private data member by 

reference, the client who calls this method can modify reversibly 
this member.  

For the same reason, if a constant method’s return type is a 
reference to a data member, the return type should also be 

constant - otherwise the data member  

♦        Constant method 

A method is declared constant by putting "const" after its function 
header. A constant method can not modify any data member. It 
still can modify received arguments and local variables. Only class 
methods can be declared “constant”, independent functions can 

not. 

When a constant object is created out of a class, all its non-
constant methods are forbidden to be called by the compiler. In 

the following example, compiler will prompt error on method call 
"t1.print( )": 

  
class TestConstant { 

public: 
 TestConstant( int i = 0); 



 int get() const; // can be called for a constant object 

 void print();  // can not be called for a constant object 
private: 

  int member; 
}; 

  
TestConstant::TestConstant( int i) 

{    member = I;  } 
  

int TestConstant::get() const 
{    return member;  } 

  
void TestConstant::print() const 

{    cout << "Hello the world!";  } 
  

int main(int argc, char* argv[]) 
{ 
 const TestConstant t1(1234); 

 cout << "The member is " << t1.get() << endl; 
 cout << "The message is "; 

 t1.print(); 
 cout << endl; 

 return 0; 
} 

Therefore, always try to declare as many methods constant as you 
can, especially those modification-free methods, so that when a 

client creates a constant object, he can still call its modification-
free methods. 

Declaring modification-free methods constant comes with another 
benefit: if you inadvertently modify the object in this method, the 
compiler can always find it out for you. It can help to eliminate 

many bugs. 

If the return type of a constant method is a reference to a data 
member, the return type must be also be constant, otherwise the 
client can modify the data member through the reference, which 

shouldn’t happen because the method is constant.  

However, there are cases when you hope that if the object is not 

constant, you want to modify the data member through the return 
type, while if the object is constant, you still want to read the data 

member through the return type. If you only provide a non-
constant method with non-constant return type, it can not be 

called for a constant object, while if you only provide a constant 



method with constant return type, it can not modify the data 

member. To solve this problem, you can provide a pair of 
overloaded methods: 

  
const int & get() const  

{ return a; } 
  

int & get()  
{ return a; } 

6.14 6.14       Member initializer 

Assignment statements can not be used in a constructor to 

initialize constant data members. Member initializers must be used 
to initialize constant data members. A list of initializers start with a 

" : " after the constructor header, speparated by ",".  Each 
initializer is the name of the data member followed by its value in 

brackets: 
  
Test::Test(int a, int b, int c): member1(a), member2(b), 

member3(c) 
{...} 

All data members CAN be initialized using member initializer 
syntax, but the following things MUST be initialized with member 

initializers:  

1. 1.        constant data members,  

2. 2.        references,  

3. 3.        base class portions of derived classes. 

6.15 6.15       Member Objects 

A data member of a user-defined type is called a member object. 
When a parent object is created, the member objects are created 
first, then they are used to construct the parent object. The order 

of the creation of member objects is decided by the order they are 

declared in the class definition, not the order of their member 
initializers. 

Member objects do not have to be initialized explicitly. If  member 
initializers are not provided, the member object’s default 
constructor will be called implicitly. Not providing a default 
constructor for the class of a member object when no member 

initializer is provided for that member object is a syntax error. 

Member objects still keep their privacy from their owner. Owner 



class's methods can not directly access their private data 

members.  They have to access them through their “get” or “set” 
methods.  

A member objects can be automatic - sometimes called “value 
semantics”, or an reference to another object -sometimes called 

“reference semantics”. 

Member objects are also called servers, and owners called clients. 

6.16 6.16       Member Objects Should Be Initialized with 
Member Initializers 

Compiler does not force you to initialize member objects with 
initializers, but you are strongly recommended to do so.   

If a member object is initialized in the constructor with an 
assignment operator, its default constructor will be called first, 

then its assignment operator. If it is initialized with initializer, only 
its constructor will be called. It is not only the matter of saving 

one method call, but also the matter of safety. For a class without 
a properly implemented default constructor or assignment 
operator, using assignment operator to initialize it may cause 

unexpected logic errors such as shallow copy. 
  

class Base { 
public: 

 Base(); 
 Base(const int i); 

 const Base & operator =(const Base & b1); 
private: 

 int member; 
}; 

  
Base::Base() 

{   cout << "Base's default constructor!" << endl;  } 

  
Base::Base(const int i): member(i) 
{   cout << "Base's constructor!" << endl;  } 
  

const Base & Base::operator =(const Base & b1) 
{ 
 cout << "Base's assignment operator!" << endl; 
 member = b1.member; 

 return *this; 
} 



  

class User { 
public: 

 User(const Base & b1); 
private: 

 Base member; 
}; 

  
User::User(const Base & b1) 

{ 
 cout << "User's constructor!" << endl; 

 member = b1; 
} 

  
int main(int argc, char* argv[]) 

{ 
 Base b1(1234); 
 User u1(b1); 

 return 0; 
} 

Output will be: 
  

Base's constructor! 
Base's default constructor! 

User's constructor! 
Base's assignment operator! 

Now if you change the User's constructor to use initializer to 
initialize Base object: 

  
User::User(const Base & b1) : member(b1) 
{   cout << "User's constructor!" << endl;  } 

Output will become: 
  
Base's constructor! 
User's constructor! 

6.17 6.17       Friend 

An independent function can be granted the privilledge to access a 
class's private members - if that class declares this function to be 
a friend of his. A function can not declare itself to be a friend of a 

class. 

To be able to access a class, this independent function should 



usually receive an argument of that class, so that it can use the 

passed handle. 
  

void showPrivacy(const NeedFriends & n1) const 
{ 

   cout << "Object's private member is " << n1.member << 
endl; 

} 
  

class NeedFriends { 
   friend void showPrivacy(const NeedFriends & n1) const; 

  
public: 

   NeedFriends(int i); 
  

private: 
   int member; 
}; 

A method can be friends of different classes. Overloaded methods 
can be friends of a class. 

6.18 6.18       this pointer 

We already know that a class method is different from an 

independent function. When we call an independent function such 
as "test(int i)", we say  

  
test1(1234); 

But when we call a method test( ) of object o1, we have to call 
through this object's handle: 

  
o1.test2(1234); 

However, internally a method and an independent function are the 

same for the compiler. When the compiler sees a method call, it 
implicitly convert it to add one more argument - the object 
through which the method is called, so that the method knows 
which object to access. So the above method call is implicitly 

converted to something like 
  
test2(&o1, 1234); 

Inside the method, the passed handle is represented by pointer 

"this". You can use it to access the object. 

For example, if class Test has three methods method1, method2 



and method3, their return types are all Test, and they all end with 

  
return *this; 

Then you can write a line of code like 
  

o1.method1().method2().method3(); 

This is called cascaded method call. 

6.19 6.19       Memory Allocation and Manipulation 

There are two ways to allocate memory for an object: statically at 

compile time and dynamically at run time. 

♦        Static memory allocation 

To allocate memory statically at compile time, the compiler must 
know for sure the size of the object. When you say 

  
int a; 
int b[100]; 

float b; 
Employee c; 

The compiler reads the type definition of the object (for object c it 
is the class definition of class Employee) and knows the size of the 

object.  

But if you say 

  
int size; 

cin >> size; 
float array[size]; 

Compiler will have no way to know how many bytes of memory to 
allocate for the array. Therefore it will complain. 

♦        Dynamic memory allocation 

To allocate memory at run time, there are two ways: C-style 

memory allocation using malloc and free, and C++ style 

allocation using new and delete.  

To use C-style memory allocation for an int array of size 120: 

  
int * pInt = (int *)malloc(120 * sizeof(int)); 

if(pInt == NULL) 
{ 

    cout << "Memory allocation failed!\n"; 
    return; 



} 

memset(pInt, 0, 120); 

There is a significant difference between C and C++ style dynamic 
memory allocation. malloc allocates exactly the amount of 
memory that you want, and it doesn’t care what you are going to 

put into that block of memory. It is also not responsible for 
initializing the allocated memory. So usually there is a memset 
function call after malloc to initialize it explicitly. 

In comparison, C++’s operatior new requires a type definition 

instead of the number of bytes you want to allocate. It reads the 
type definition and allocate exactly the amout of memory needed 

to hold the object of the given type, then it calls the constructor of 
that type to initialize the object. 

Therefore, malloc is the most flexible way to allocate memory, for 
it does the least thing for you and leave you with all freedom. But 

it is also error-prone. It is much safer and simpler to allocate 
memory for an encapsulated C++ object. 

Besides, C-style function memset may breach the encapsulation 

law. It can directly access private data members of an object. 

♦        Memory de-allocation 

To free the memory with C-style code: 
  

free(pInt); 

To free the memory in C++ code: 

  
delete pFloat; 

Again, C++’s delete is more convenient to use. It calls the 
destructor of the type before freeing the memory. 

♦        Difference between static allocation and dynamic 
allocation 

The overhead of dynamic memory allocation is that it takes 

computer time to obtain memory from the OS, and it may not 
always succeed.  So for the sake of performance, if you can decide 

the size of the memory, always allocate memory at compile time 
using declarations. 

Local objects created by declaration is discarded after leaving 
scope, but objects created by dynamic memory allocation is not 

destroyed after leaving scope.  If not deleted it exists until the end 
of run.  



6.20 6.20       Pointer Status after delete 

After an object is freed using operator delete on its pointer, the 
object’s memory space is freed, but the pointer itself still exists, 
because it is a local object. It is still pointing to the same memory 
location which has now been reclaimed by the OS. Therefore, if 

you delete it again the OS will shut down your program, because 
you are trying to delete something in the OS's territory.  

However, if you delete a pointer with a value of 0, the delete 
operation doesn’t do anything. Therefore, to prevent somebody or 

even yourself from accidentally deleting a pointer after it has 
already been deleted, assign 0 to a pointer after deleting it. 

6.21 6.21       Memory Leak 

If you keep asking from the OS dynamic memory but never 

remember to release them back to OS with delete after you no 
longer need them, finally the OS will tell your memory that no 

memory is available.  It is called “memory leak”, because your 

program is presently using very little memory but OS told you 
there is none left - it seems as if the memory resource has leaked 
away from a crack like water. 

6.22 6.22       Who is Responsible to Delete an Object 

When we delete a dynamicly created object, the program calls its 
destructor to delete cascaded dynamic objects pointed by data 
members of this object. Then the object itself including all its data 
members are destroyed and memory released to the OS. 

Normally a class doesn’t contain any code to delete itself - it is 
only responsible for deleting its own dynamically created 

members. It is the one who created an instance of this class on 
the heap who is responsible for deleting this object, not the object 

itself, because the object can only be deleted when it is created on 
the heap, and the code in the class implementation has no way to 

know whether each instance of itself is created on the heap or 

stack. 

However, in some special cases when a class is designed to be 

created on the heap and it has to delete itself, you can put 
“delete this;” in the class to delete itself. It has the same effect 

as when a client deletes this object. 

Consider the following example. 

  
class Employee   



{ 

public: 
    void ChangeAge(); 

    void DisplayAge(); 
    void Delete(); 

    void DisplayName(); 
    Employee(); 

    virtual ~Employee(); 
  

protected: 
    int m_nAge; 

    char * m_strName; 
}; 

  
Employee::Employee() :  m_nAge(34) 

{ 
    m_strName = new char[30]; 
    strcpy(m_strName, "Frank Liu"); 

} 
  

Employee::~Employee() 
{  delete m_strName;  } 

  
void Employee::DisplayName() 

{  cout << m_strName << endl;  } 
  

void Employee::DisplayAge() 
{  cout << m_nAge << endl;  } 

  
void Employee::ChangeAge() 

{  m_nAge = 35;  } 

  
void Employee::Delete() 
{  delete this;  } 

Suppose we have created two instances of Employee, one 

statically and one dynamically: 
  

Employee e1; 
Employee * e2 = new Employee; 

If we say  
  

delete e1; 

the compiler will complain because “e1” is created statically. 



However, we can cheat the compiler by saying 

  
e1.Delete(); 

but there will be a run-time error, because inside Delete function 
we are still deleting a statically-created object. 

If we say 
  

delete e2; 

or 

e2->Delete(); 

They are doing the same thing and both allowed. Then if we say 
  
e2->DisplayAge(); 

An undefined value will be displayed. If we say 
  

e2->DisplayName(); 

Run-time error will happen.  

This proves one thing: after an object is deleted from the heap, 

the memory space it used to occupy is retrieved by the OS, and 
you can not access it anymore. 

6.23 6.23       Static Data Member 

Normally each object has its own copy of all the data members. 

But sometimes all the objects share one data member. In this 
case, we declare this data member “static”.  

A class’s static data members exists before any object is created. 
They must be initialized at file scope in the class source file, using 
class name and binary scope resolution operator “::” (see the 
following example). Both public and private members can be 

accessed this way. Even if you will use “set” method in other 
methods such as “main” to initialize the static data members, you 
still have to initialize them first in the class source file.   

Static array is initialized like 
  
int array[] = {1,2,3,...} 

6.24 6.24       Static Method 

A static method is defined by putting keyword “static” in front of 
the method prototype in the class definition, but DO NOT put 
“static” in front of the method definition in the class’s source file.  



A static method can not access any non-static data members. As 

said before in the discussion about "this" pointer, a normal method 
receives implicitly the handle of the object so that it knows which 

objec to access. But a static method is not attached to any object 
of the class and thus does not receive any object handle. So it has 

no way to access any object data member. It can only access 
static data members. 

Static data members are also called "class data", and static 
methods are also called "class methods". 

In file "Employee.h": 
  

class Employee { 
public: 

   Employee(char *); 
   const char *getName() const; 

   static void setTotal(int);  

   static int getTotal(); 
private: 
   char * name; 
   static int total;   

};  
  

In file "Employee.cpp": 
  

#include "Employee.h" 
  

int Employee::total = 0; // file scope initialization of static data 
member 

  
Employee::Employee(char *n) 

{ 

   total ++;  // manipulation of the static data member in 
constructor 
   name = n;   
} 

  
void Employee::setTotal(int t) 
{  total = t; } 
  

const char * Employee::getName() const 
{  return name; } 
  
int Employee::getTotal() 



{  return total; } 

  

Notice the use of keyword “int” in the initialization of the static 
data member “total”. Because no object is created yet, this 
statement tells the compiler to allocate a memory space for "total" 

of the size of an integer. 
  
#include "employ. h" 
  

int main () 
{ 
   Employee::set(33); 
   Employee e1("John Smith"); 

   Employee e2("Frank Liu"); 
   cout << Employee::getTotal() << e1.getName()<< 

e2.getName() << endl; 

   Employee.setTotal(77); 
   cout << "There are " << e1.getTotal() <<" employees." 

<<endl; 
} 

Notice the two ways to access static data member: through the 
class name with “::” and through the handle of an object. Through 
class name is logically clearer. 

6.25 6.25       assert 

The “assert” macro tests the value of a condition enclosed in “( 
)”: 

  
assert (continuation condition); 

If the condition is true, it continues to the next statement. If it is 
false, it will call method “abort”, and print out an error message, 

including the line number, the condition and the file name, and 

terminate the program. It is a very useful debugging tool. 

When you write a complex project, you can put “assert” 

statements after important operations to make sure that the result 
is right.  It helps you to filter out bugs at a early stage before it 

causes complex confusions. 

After the whole program is debugged, you needn’t delete those 

“assert” statements. Just add one line at the beginning of the file: 
  
#define NDEBUG 



This causes the preprocessor to ignore all assertions. 

 “assert” is defined in header file “assert.h”. Method “abort” is 
defined in header file “stdlib.h”. 

6.26 6.26       Proxy/Wrapper Classes 

As we discussed before, separating interface from implementation 

helps hiding the implementation details from the clients. However, 
the clients can still see the class’s private data members. By 
providing clients with a proxy/wrapper class of the original class, 
the original class can be totally hidden from the clients. 

For example, the original class is: 

In "origin.h": 

  
class Origin { 

public: 
   Origin(int); 

   void set(int); 
   const int get() const; 
private: 

   int value;  
}; 

  

In "origin.cpp": 

  
#include <iostream> 

#include “origin. h” 
  

Origin::Origin(int v)  
{  value = v; } 
  
void Origin::set(int v)  

{  value = v; } 

  
const int Origin::get() const 

{  return value; } 

The wrapper class wrapping around the original class: 

In "proxy. h": 
  
class Origin;  // forward class declaration 
  

class Proxy { 



public: 

   Proxy(int); 
   void set(int); 

   const int get() const; 
private: 

   Origin * ptr;  
}; 

In "proxy. cpp": 
  

#include “Origin. h” 
#include “Proxy. h” 
  
Proxy::Proxy(int v) : ptr(new Origin(v))  

{ } 
  
void Proxy::set(int v)  

{  ptr->set(v); } 
  

const int Proxy::get() const 
{  return ptr->get(); } 

The reason the wrapper class wraps around a pointer instead of a 
member object is: if a class only has a pointer pointing to another 
class, the header file of the other class is not required to be 
included. You can simply declare that class as a data type with a 

forward class declaration. This is the key factor that makes it 
possible to hide the private data members of the original class 
from clients. 

Notice that there is not proceeding preprocessor directives 

  
#ifndef XXXX_H 

#define XXXX_H 

... 
#endif 

  



7. 7.         OPERATOR OVERLOADING 

7.1 7.1          Fundamentals of Operator Overloading 

When operators such as +, -, *, /, = are used for different built-in 

types such as “int” and “float”, they actually have been overloaded 
by C++. They can also be overloaded for any user-defined type, to 
perform the same or similar operation.  

For built-in type e.g. int, you can say “ c = a + b ” or “cout << a 

<< b << c”. Now with operator overloading, you can declare a 
new type e.g. “Test a, b, c”, calculate them with “ c = a + b ”, 

output them with “cout << a << b << c”. Therefore, the user-
defined type “Test” is fully equal to built-in type such as “int”. 

That’s why we say that C++ is an extensible language. 

When overloading (), [], ->, or =, the operator overloading 

method must be a class member. 

7.2 7.2          Overloading binary operators 

A binary overloading member method taks one argument: 

  
Test & operator+(Test &); 

When the compiler sees a binary formula such as "a + b", it calls 
the "operator+" method of the left-hand operand "a", and passes 

the right-hand operand "b" as its argument. So "c = a + b" is 
implicitly converted to 

  
c = a.operator+(b); 

A global binary overloading function takes two arguments: 
  

Test & operator<<(Test &, Test &); 

When the compiler sees " a + b", it calls the independent 
"operator+" method, and passes the two operands "a" and "b" as 
its arguments: 

  

operator<<(a, b); 

7.3 7.3          Operator << and >> can not be Member 
Functions 

The global binary operator overloading function is specifically 

useful when the left-hand operand does not belong to the class in 
question, such as 



  

CMyOwnClass a, b; 
cout << a; 

cin >> b; 

Because class cout and cin have not overloaded operator << and 

>> for type CMyOwnClass, you have to overload it yourself. 
However, you can not put this function in class CMyOwnClass, 
because a and b are not left-hand operand. So you have to use a 
global operator overloading function, such as stream-insertion and 

extraction operators: 
  
ostream & operator<<(ostream &, Test &); 
istream & operator>>(istream &, Test &); 

As an independent function, for performance reason, it is better to 
be a friend of the class, so that it can directly access its private 

data members. Otherwise it has to access them through “get” and 

“set” method calls. If that’s the case, you can make these non-
methods inlined to reduce the overhead. 

7.4 7.4          Overloading Unary Operators 

Because the operand of a unary operator is always on the right, 

the unary operator method can either be a class member or an 
independent function. But it is preferable to make it a method. The 
use of friend here violates the encapsulation of a class. 

♦        Method 

Suppose “a” is an object of class “Test”, and operator “!” is 
overloaded by a method, then this method has no argument: 

  
bool operator!() const; 

and “!a ” is equal to “a.operator!() ”. 

♦        Independent function 

Suppose “!” is overloaded by a friend method, then the method 

has one argument: 
  

bool operator!(const Array &); 

and “!a ” is equal to “ operator!(a) ”. 

7.5 7.5          Operator Cascading 

The return type of all operator overloading methods, both 

methods and independent functions, can be void. The 



disadvantage of having void return type is, you can’t use 

cascading operators, such as “ cout << c << endl” or “ c = a + b 
”, because “ cout << c ” as a method call returns nothing, and 

apparently “ void << endl ” has no meaning. So is “ c = void; ”.  

To enable such cascading, normally operator overloading methods 

has its return type defined as class type, and returns the result 
object. Return-by reference is widely used here, because it can 
save the copying process, which is a big overhead for objects of 
large size. 

7.6 7.6          Subscription Operator [ ] 

The subscript operator [ ] is not restricted for use only with 
arrays; it can be used to select elements from any kinds of 
container classes such as linked lists, strings, dictionaries, and so 

on. Also, subscripts no longer have to be integers; characters or 
strings could be used, for example. 

7.7 7.7          "operator =" and Default Memberwise Copy 

If you do not explicitly overload assignment operator, the compiler 
will use default memberwise copy to perform object assignment. 

Normally it will do the job, but for objects with pointers, it will 
create a new pointer pointing to the same memory location 

instead of new memory location.  

7.8 7.8          Orthodox Canonical Form (OCF) 

A constructor, a destructor, an overloaded assignment operator, 
and a copy constructor are recommended for all classes, even if it 

does not have dynamic members at this stage. Programs 
containing these four components are said to be in Orthodox 

Canonical Form.  

7.9 7.9          Check for Self-assignment 

The check for self-assignment is only necessary for a assignment 
operator when dynamic memory allocation is involved, in which 

some deletion job is done. In such a case if we don’t check for 

self-assignment, the object’s memory space will be deleted first 
and all the info stored in the dynamic memory will be lost.  

7.10 7.10       An Example about Pass-by-reference 
  

class Test { 
public: 
   int & bridge( int & ); 



}; 

  
int & Test::bridge (int & input) 

{ return input; } 
  

int main() 
{ 

   Test a; 
   int b=333; 

   int c = a.bridge(b); 
   cout << "c = " << c << endl; // should be 333 

   a.bridge(b) = 444; 
   cout << "b= " << b << endl; // used to be 333, now should 

be 444 
} 

Because a reference is the address of the original object, this 

address can be passed back and forth to anywhere, and all parties 
who have a copy of this address can directly manipulate the 

original object. 

Method “bridge” receives one reference from calling method, and 

return this reference back to the calling method. Any modification 
on the returned value will affect the passed argument. 

7.11 7.11       lvalue and rvalue 

 “lvalue” means a variable that is modifiable, such as the left 

variable in an assignment. “rvalue” means a variable which 
doesn’t need to be modified, such as the variable on the right of 
an assignment. 

7.12 7.12       Overloading ++ and -- 

♦        Preincrementing 

The prefix versions of ++ and -- (such as ++a and --a) are 

overloaded exactly as any other prefix unary operator:  

  
Test & operator++(); 

Suppose there is an object "a" of class "Test", when the compiler 
sees the preincrementing expression "++a", it generates the 

method call 
  

a.operator++(); 

When the preincrementing is implemented as an independent 



function: 

  
Test & operator++(Test &); 

When the compiler sees the expression "++a", it generates the 
method call 

  
operator++(a); 

♦        Postincrementing 

To make the overloaded method of postincrementing operator 

distinguishable from preincrementing one, the operator method 
should be: 

  
Test & operator++(int); 

When the compiler sees the expression "a++", it generates a 
method call 

  

a.operator++(0); 

"0" is a "dummy value" to make the parameter list of the 
overloaded operator method different from preincrementing one. 

If the postincrementing is implemented as an independent 

function: 
  

Test operator++(Test &, int); 

when the compiler sees the expression "a++", it generates 

method call 
  

operator(a, 0); 

The return type for postincrementing can not be a reference, 

because the returned object should be the object BEFORE 
increment, not after increment. So we have to create a temporary 
local object to hold the value of the original object, then increment 

the original object, and return the temporary one. 

7.13 7.13       Example: Date Class 

  
#include <iostream> 

#include <conio.h> 
  

class Date { 
   friend ostream & operator<<(ostream &, const Date &); 

public: 



   Date(int=1, int=1, int=1900); 

   void set(int, int, int); 
   const Date & operator++(); 

   const Date operator++(int); 
   const Date & operator +=(int); 

private: 
   int day; 

   int month; 
   int year; 

   static const int days[13]; 
   bool leap(); 

   const int checkDay(); 
   void increment(); 

}; 
  

const int Date::days[] = 
{0,31,28,31,30,31,30,31,31,30,31,30,31}; 
  

Date::Date(int d, int m, int y) 
{  set(d, m, y); } 

  
void Date::set(int d, int m, int y) 

{ 
   day = d; 

   month = m; 
   year = y; 

  
   if(checkDay1()<0 || month<=0 || month>12) 

   { 
      cout << "Wrong Date format!  Date is set to be 

1/1/1900.\n"; 

      day = 1; 
      month = 1; 
      year = 1900;  
   } 

} 
  
const Date & Date::operator ++() 
{ 

   increment();  
   return *this;  
} 
  

const Date Date::operator ++(int) 



{ 

   Date temp = *this;             // default memberwise copy 
   increment(); 

   return temp;  
} 

  
const Date & Date::operator +=(int dd1) 

{ 
   for(int i=1; i<=dd; i++) 

      increment(); 
   return *this;  

} 
  

bool Date::leap() 
{ 

   if (year % 400 == 0 || (year % 100 != 0 && year % 4 == 
0)) 
      return true; 

   else 
      return false;  

} 
  

const int Date::checkDay() 
{ 

   if(month == 2 && leap()) 
      return 29 - day; 

   else 
      return days[month] - day;  

} 
  

void Date::increment() 

{ 
   if( checkDay1()>0 ) 
      day ++; 
   else 

   { 
      day = 1; 
      if (month < 12) 
         month ++; 

      else 
      { 
          month = 1; 
          year ++;  

      } 



   } 

} 
  

ostream & operator<<(ostream & output, const Date & obj) 
{ 

   output << "Date: " << obj.day << "/" << obj.month << "/" 
<< obj.year << endl; 

   return output;  
} 

  
int main() 

{ 
   Date d1(31,12,1999), d2(31,1,1999), d3(23,2,2000),  

   d4(23,2,4444), d5(23,2,1999); 
   d4.set(23,2,1212); 

   ++d1; 
   cout << d1; 
   d2++; 

   cout << d2; 
   d3 += 6; 

   cout << d3; 
   d4 += 7; 

   cout << d4; 
   d5 += 6; 

   cout << d5 << "Press any key when ready..."; 
   getch(); 

} 



8. 8.         INHERITANCE 

8.1 8.1          Method Overriding 

When a method of the derived class has the same signature as 

that of the base class, it is said that the method of the derived 
class overrides the method of the base class. The base-class 
version of method is only overridden from external point of view – 
they are still accessible from the derived class internally. The 

derived-class method often needs to call its overridden base-class 
method to perform part of the job related to the base-class data 

members.  

In this case, if you forget to use the scope resolution operator in 

front of the invoked overridden base-class method, it will actually 
call itself and thus create a infinite recursion until the memory is 

run out. 

One interesting point: normally all overloaded methods can be 
accessed through different signatures, but if you overload a base-

class method in the derived class – with a different signature, the 
base-class method is actually overridden instead of overloaded: 

  
#include <iostream> 

  
class Base { 

public: 
   int print(int i) 

   { 
      cout << "Base-class version, int a = " << i << "\n"; 

      return i; 
   } 
}; 
  

class Derived : public Base { 

public: 
   char print(char c) 

   { 
      cout << "Derived-class version, char c = " << c << "\n"; 

      return c; 
   } 

}; 
  

int main() 
   { 



      Derived d1; 

      char c = 'a'; 
      int i = 1234; 

      d1.print(i); 
      d1.print(c); 

      cin >> i; 
   } 

Output will be: 
Derived-class version, char c = π 

Derived-class version, char c = a 

Only the derived-class method will be called. This rule looks a bit 

wierd. In Java, a base-class method can be overloaded in the 
derived-class and both methods can be accessed by clients (if they 

are both public). 

8.2 8.2          Initialization of the Base-class Part of the Object 

To initialize the base-class part of data members of the derived 

class, member initializer must be used.  

If a base-class constructor is not explicitly invoked, the compiler 

will implicitly call the base-class default constructor. If no base-
class default constructor is provided, the compiler will issue a 

syntax error. 
  

class Derived : public Base { 
public: 

 Derived(const int = 0, const int = 0); 
 Derived(const Derived &); 

 const Derived & operator=(const Derived &); 
private: 

 int member; 
}; 

  

Derived::Derived(const int i1, const int i2) : Base(i1), 
member(i2) 
{} 
  

Derived::Derived(const Derived & d) : Base(d), 
member(d.member) 
{} 
  

const Derived & Derived::operator=(const Derived & rv) 
{ 



 member = rv.member; 

 Base::operator=(rv); 
 return *this; 

} 

When a derived-class object is created, the base-class constructor 

will be called first, then the derived-class constructor. When it is to 
be deleted, the derived-class destructor is called first, then the 
base-class destructor. 

In a multi-level inheritance, the constructor of a certain level is 

only responsible to call the constructor of the next-level class. 

8.3 8.3          Conversion between base class and derived class 

Objects of a derived class may be used as an object of the base 
class. The compiler will make an implicit conversion. But objects of 

the base class can not be used as objects of derived class. The 
derived class is more specific and thus contains more info. To cast 

a less specific class to a more specific class, the extra info needed 

to construct the later one is missing. It may cause serious run-
time errors.  

Suppose: 

1. 1.        “Base” is a base class, “b1” is a base-class object, 

“basePtr1” is a base-class pointer; 

2. 2.        “Derived” is a derived class, “d1” is a derived-class 
object, “derivedPtr1” is a derived-class pointer 

3. 3.        Both the base and the derived class has a method 

"print( )"  

Using object name: 

  
b1.print();      // base-class version "print()" called 
d1.print();      // derived-class version "print()" called  

Using Pointer: 

basePtr1 = &b1; 

derivedPtr1 = &d1; 
basePtr1->print();      // Base-class version "print()" called 

derivedPtr1->print();   // Derived-class version "print()" called 
derivedPtr1 = &b1;       // Try to convert b1 to Derived-class 

object. Illegal!  
basePtr1 = &d1;          // Implicitly convert d1 to Base-class 

object. 



basePtr1->print();      // Still the base-class version "print()" 

called 

However, when you use 
  
derivedPtr1 = static_cast<Derived *>(&b1); 

you are telling the compiler that you know the danger and you 
deliberately want to take that risk. So compiler will allow that 

operation. But the derived-class part of data will remain 
undefined. 

8.4 8.4           “is-a”, “has-a”, "Use-A" and "Know-A" 
Relationship 

“is a” relationship is inheritance. In an “is-a” relationship, an 
object of a derived class can also be treated as an object of the 

base class, just like a 4WD can be treated as a vehicle. 

“has a” relationship is composition. In a “has-a” relationship, an 

object has one or more objects of other classes as members. Just 
like a 4WD has an engine. 

A person is not a car and do not contain a car, but he uses a car. 

A method uses an object simply by issuing a method call to a 
method of that object. 

An object can know another object by containing a pointer to it. 
This is called "know a" relationship. Sometimes it is called 
"association". 

8.5 8.5          Public, Protected and Private Inheritance 

Public inheritance inherits base class's public and protected 
members as its own public and protected members, and base 
class's private members are hidden. 

Therefore, if you do not want derived classes to access a member, 

you should declare it private. If you do not allow clients but would 
allow derived classes to access it, you should declare it 

protected.  

Protected data breaks encapsulation – a change to protected 
members of a base class may require modifications of all derived 

classes. Therefore, always try to declare data members private, 
and use protected as a final resort. 

♦        Public inheritance  

From base-class to derived-class: 



public  => public 

protected  => protected 

private  => hidden 

♦        Protected inheritance 

public  => protected 

protected  => protected 

private  => hidden 

♦        Private inheritance 

public  => private 

protected  => private  

private  => hidden 

8.6 8.6          Shrinking Inheritance 

Through private inheritance, all the members of the base class 

are made hidden or private in the derived class, thus inaccessible 
to the clients. This is useful for shrinking inheritance: you only 
want to inherit part of the methods from a class. You override the 

base-class methods with a simple call it, and for those unselected 
methods, they became private members and suppressed to the 

clients.  

For example, suppose “Base” is a base class, and the derived class 

will be like: 
  
template <class Type> 
  

class Derived : private Base { 
public: 
   Derived(const Type & x) : Base(x) {} 
   void setX1(const Type & x)  {  Base::setX1(x); } 

   void setY1(const Type & x)  {  Base::setY1(x); } 
   const Type & getX1() const  {  return Base::getX1(); } 
   const Type & getY1() const  (  return Base::getY1(); ) 

}; 

8.7 8.7          Methods That Are Not Inherited 

The four Orthodox Canonical Form methods – constructors, copy 
constructors, assignment operators and destructors, are not 
inherited in C++. 



8.8 8.8          Software Engineering with Inheritance 

A derived class does not need to access the source code of the 
base class, but only need the base class's object code. Therefore, 
independent software vendors (ISV) can develop their own class 
libraries and provide clients with only object codes. 

Modifications to a base class do not require derived classes to 
change, as long as the public and protected interfaces of the base 

class remain unchanged. Derived classes may, however, need to 
be recompiled. 

Although in theory users do not have to know the source code of 
the inherited class, in practice lots of programmers still seem 

reluctant to use something that they don't know. On the other 
hand, when performance is a major concern, programmers may 

want to see source code of classes they are inheriting from, so 
that they can tune the code to meet their performance 

requirements. 

A base class specifies commonality -- all classes derived from a 
base class inherit the capabilities and interfaces of that base class. 

In the object oriented design process, the designer looks for 
commonality and "factors it out" to form a base class. Derived 

classes are then customized upon the base class.  

In a object oriented system, classes are often closely related. So 
the best way is to "factor out" common attributes and behaviors 
and place them in a base class, then use inheritance to form 

derived classes. 

8.9 8.9          Partial Assignment 

Partial assignment is: when using base-class pointer or reference 
to make assignment on derived-class objects, only the base-class 

part of the data is assigned. The reason for this is: because 
assignment operator can not be virtual, when using base-class 
reference to assign derived-class objects, only the base-class 

assignment operator is called. 
  

class Base { 
public: 
   Base(int a) : _a(a) {} 
  

   const Base & operator=(const Base & obj) 
   { 
      cout << "Base-class assignment operator called! \n"; 
      _a = obj. _a; 



      return *this;   

   } 
  

   const int get() const { return _a; } 
  

   virtual void print() const = 0; 
  

private: 
   int _a; 

}; 
  

class Derived : public Base { 
public: 

   Derived(int a, int b) : Base(a), _b(b) {} 
  

   const Derived & operator=(const Derived & obj) 
   { 
      cout << "Derived-class assignment operator called! \n"; 

      _b = obj. _b; 
      Base::operator=(obj); 

      return *this;   
   } 

  
   virtual void print() const 

   { cout << "_a = " << Base::get() << ", _b = " << _b << 
endl; } 

  
private: 

   int _b; 
}; 

  

int main() 
{ 
   Base * ptr1 = new Derived(11, 111); 
   Base * ptr2 = new Derived(22, 222); 

   (*ptr1) = (*ptr2); 
   cout << "Derived 1: "; 
   ptr1->print(); 
   cout << "Derived 2: "; 

   ptr2->print(); 
} 

output will be: 
  

Base-class assignment operator called! 



Derived 1: _a = 22, _b = 111 

Derived 2: _a = 22, _b = 222 

There is no way to make assignment without partial assignment 
on derived-class objects with base-class reference or pointer. To 
forbit doing this, declare the base-class assignment operator 

protected, so that it can not be invoked. Then to conform to OCF 
this class should be abstract – because an OCF must have a public 
assignment operator. 

Even if the base class is an ABC, if assignment operator is not 

protected, partial assignment will still happen. 

So generally speaking, to avoid partial assignment, always inherit 

from ABC and make its assignment operator protected. 

8.10 8.10       Sequence of Constructor Call in Inheritance 

Suppose a class inherits from a base class and contains a member 
object, when an object is created, the base-class constructor will 

be called first, then the composition class, then the derived class 
itself. For example: 

  

class Base1 { 
public: 

   Base1() {  cout << "Base1 Constructor !\n"; } 
}; 

  
class Base2 { 

public: 
   Base2() {  cout << "Base2 Constructor! \n"; } 

}; 
  

class Derived : public Base1 { 
private: 

   Base2 b1; 

   int d; 
public: 
   Derived(int d1) : d(d1) {  cout << "Derived Constructor! \n"; 

} 

}; 
  
int main() 
{  Derived d1(33); } 

Output will be: 
  



Base1 Constructor! 

Base2 Constructor! 
Derived Constructor! 

8.11 8.11       Default Constructor in Inheritance 

When a base class have constructors but does not have a default 

constructor, and in the derived class there is no explicit call to 
base-class constructor, compiler will prompt error. But if the base 

class has no constructors at all, compiler will generate one 
implicitly. This is the same in Java. 



9. 9.         POLYMORPHISM 

9.1 9.1          Virtual Methods 

When a method is declared virtual, it remains virtual all the way 

down the inheritance hierarchy even if the overridden method in 
the derived class is not declared virtual. However, it is a good 
practice to explicitly declare all the overriding methods down in 
the hierarchy to be virtual to promote program clarity.  

If a derived class doesn't provide an overriding method, it will 
simply inherits its base class's virtual method. 

9.2 9.2          Polymorphism 

When different classes inherits from the same base class, we can 

use a base-class pointer to point to any derived-class objects, and 
access their virtual methods. Objects of different classes related 

by inheritance from the same base class can response differently 
to the same method call. 

9.3 9.3          Dynamic and Static Binding 

♦        Dynamic Binding 

When a pointer is used to refer to a derived-class virtual method: 

  
basePtr1 = &DeriveObj1; 

basePtr1->print(); 

the correct method is chosen at run time dynamically. This is 
called "dynamic binding".  

Because the correct method is not chosen at compile time, a 

program can be written to receive and make use of an object of a 
class which has not be developed yet. It can simply put a base-

class pointer in the parameter list, and perform all the operations 
through this pointer. 

♦        Static Binding 

If the object name is used to call its method: 
  

DerivedObj1.print(); 

the correct method is chosen at compile time. This is called "static 
binding".  



9.4 9.4          Abstract Base Class (ABC) 

We declare the base-class virtual method "pure" by putting "= 0" 
at the end of the method prototype. We needn't but we are 
allowed to provide method definition for pure methods. 

A base class with a pure method is called abstract base class 
(ABC). It is designed purely to be inherited, and is not allowed to 
have any instance. The only way to make a class abstract is to 

have a pure method. In Java, you can simply put “abstract” in 
front of a class header to make it abstract. 

If a class is derived from an abstract class and does not provide an 
overriding method for the pure virtual method, it will inherit the 

pure virtual method and thus become an ABC too. 

A hierarchy does not need to contain any abstract classes, but 

many good OO systems have class hierarchies headed by one or 
even several levels of abstract classes. To prevent partial 
assignment, it is a good practice to always inherit from ABC. 

Pure virtual methods do not need to have any implementation, 
but it can be implemented – although it is very misleading. When 
all the methods of the base class need to do something – it is 
always better to put as much as common behaviors of different 

derived classes into the base class – but still we want this class to 
be ABC, we make the destructor pure virtual.  

9.5 9.5          Virtual Destructor 

Although a constructor can not be virtual, a destructor can be, so 

that you can delete a derived-class object though a base-class 
pointer. Otherwise when deleting this object only the base-class 
destructor will be called. 

9.6 9.6          Hierarchy for Interface and Implementation 

Hierarchies designed for implementation tend to have their 
methodality high in the hierarchy. Derived classes inherit these 
implementations.  

Hierarchies designed for interface tend to have their methodality 
lower in the hierarchy. The base class only provide an interface 
(e.g. with pure virtual methods), and the derived class provide 
their own implementations. Like Java’s interfaces. 

When a base class is purely designed for providing an interface, it 
may only contain pure virtual methods and no data members. 



9.7 9.7          Base Class Idiom 

Virtual destructor and protected assignment operator is called the 
base class idiom. 

9.8 9.8          Apply Polymorphism on Operator << and >> 

As discussed before, stream insertion and extraction operators ( 

>> and << ) can not be member methods. But we can still make 
them applicable to polymorphism: 

  
ostream & operator<<(ostream & os, const Base & obj)  

{  return obj.output(os);  }  

Then we write a virtual output method for all derived classes: 

  
virtual ostream & output(ostream & os) 



10. 10.     STREAM IO 

10.1 10.1       Iostream Library Header Files 

1. 1.        “iostream.h” contains basic information required for all 

stream-IO operations. 

2. 2.        “iomanip.h” contains information useful for performing 

formatted IO with parameterized stream manipulators. 

3. 3.        “fstream.h” contains information for user-controlled file 
processing operations. 

10.2 10.2       Stream IO Classes and Objects 

“iostream.h” contains many classes for handling a wide variety of 
IO operations. The “istream” class and “ostream” class are both 
derived from “ios” class. The “iostream” class is derived through 
multiple inheritance from both “istream” and “ostream” class. 

“cin” is an object of “istream” class and “cout” is an object of 
“ostream” class. They are tied to standard input and output 

device such as keyboard and screen. Left-shift operator “<<” is 

overloaded in the class as a stream-insertion operator to perform 
stream output, and right-shift operator “>>” is overloaded as a 
stream-extraction operator to perform stream input. These 
overloaded operators made it possible to perform IO with simple 

statement like 
  
cin >> a; 
cout << b; 

“cerr” and “clog” are objects of the “ostream” class and tied to 
the standard error device. Outputs to “cerr” is not buffered and 

outputs to “clog” is buffered. 

10.3 10.3       Output the address of a pointer 

When we output a pointer of a type other than char, the address 
of the object to which the pointer is pointing to is output. 

However, if we output a char pointer, the string will be output. To 

output the address of the string, we have to cast the char * to 
void *: 

  
int main(int argc, char* argv[]) 

{ 
 Derived * derivedPtr = new Derived(111, 222); 
 cout << "derivedPtr = " << derivedPtr << endl; 



 char * charPtr = "Frank Liu"; 

 cout << "charPtr = " << charPtr << endl; 
 cout << "(void *)charPtr = " << (void *)charPtr << 

"\n\n"; 
  

 return 0; 
} 

Output will be: 
  

derivedPtr = 0x00301A60 
charPtr = Frank Liu 
(void *)charPtr = 0x004270E4 

10.4 10.4       Method put 

The put method outputs one character: 
  
cout.put(‘A’); 

put can be cascaded as 
  
cout.put(‘A’).put(‘B’); 

10.5 10.5       Stream Input 

♦        Stream Extraction Operator 

A stream extraction operator reads from the input stream until a 

whitespace character such as a blank, tab and newline is 
encountered. The operator returns a reference to the object 

through which it is invoked (e.g. cin). But if the EOF is 
encountered, it will return zero. Therefore you can use a "while" 

loop to input a series of values: 
  

while(cin >> a) 
{...} 

♦        get( ) and getline( ) 

Method get with no arguments inputs one character from the 
designated stream (even if it is whitespace) and returns it. It 

returns EOF if EOF is encountered. 

Method get with a character argument inputs one character from 

the input stream (even if it is whitespace) and assign it to the 
character argument. It returns a reference to the object through 
which it is invoked (e.g. cin), and returns 0 when EOF is 
encountered. 



Therefore, you can use a while loop to input a series of characters: 

  
while(c = cin.get() != EOF) 

{...} 
  

while(cin.get(c)) 
{...} 

The above two formats do the same job. 

The third version of method get takes three arguments: a 

character array, a size limit, and a delimiter with default value 
'\n': 

  
const int size = 35; 

char array[size]; 
cin.get(array, size)       // use default value '\n' as delimiter 

cin.get(array, size, '%')  // use '%' as delimiter 

This version reads characters from the input stream and load them 
into the character array, until (size - 1) characters had been read, 

or before that the delimiter is encountered. Finally a NULL 
character is inserted to the end of the inputted character string in 

the array. 

When the delimiter is encountered, the method does not load it 

into the character array, and it remains in the input stream. 
Therefore, the next input method will get this delimitor such as a 

new line. 

The getline method is the same as the third version of get, 
except that it reads in the delimiter character from the input 
stream and discard it. 

♦        ignore( ) 

The ignore method reads in and discards a number of characters 

(default is one) from the input stream, or until encounters a 

designated delimiter (default is EOF, which causes skipping to the 
end of the whole file). 

♦        putback( ) 

The putback method places the last character obtained by get 

method back to the input stream. It is useful when you check 
characters one by one with get method looking for a field 
beginning with a specific character. When you find this character 
you put it back to the input stream, so that other input statements 

can input it correctly. 



♦        peek( ) 

It is the combinition of get and putback. It returns next character 
in the input stream, but doesn't remove that character from the 
stream. 

10.6 10.6       Unformatted IO 

Unformatted IO inputs or outputs a certain number of bytes 
without any format. 

♦        write( ) 

It has two arguments: a character array and the number of bytes 

to be outputted: 
  

char * array = "ABCDEFGHIJKLMN"; 
cout.write(array, 5);     // "ABCDE" will be outputted. 

♦        read( ) 

Its arguments are the same as write. If not enough bytes are 

read, failbit will be set. 

♦        gcount( ) 

It returns the number of bytes read by last input operation. 

  
const int size = 80; 

char buffer[size]; 
cin.read(buffer, 20); 

cout.write(buffer, cin.gcount()); 

10.7 10.7       Stream manipulators 

When a stream manipulator is inserted, the format of the following 
output are all determined by it, until a different manipulator is 

inserted again. 

♦        Parameterized Stream Manipulator 

Stream Manipulators which take arguments are called 
parameterized stream manipulators, such as setprecision, 

setbase, etc. Their header file is <iomanip.h>. 

♦        Integral Stream Base 

Integers are by default interpreted as decimal values. To change 

the base, insert the manipulator "hex" for hexadecimal, "oct" for 
octal, and "dec" to change back to decimal. Or you can use 
parameterized stream manipulator setbase, whose arguments 
may be 8, 10 or 16. 



  

int a = 11; 
cout << a << endl          // "11" will be outputted 

     << oct << a << endl   // "14" will be outputted 
     << hex << a << endl;  // "B"  will be outputted 

♦        Floating-Point Output Precision 

The precision method or setprecision parameterized stream 

manipulator control the number of digits to the right of the 
decimal point. The precision method with no arguments returns 

the current precision setting: 
  

int a = 3.14159265; 
cout << setprecision(2) << a;     // "3.14" will be outputted 

cout.precision(4); 
cout << a                         // "3.1416" will be outputted 

cout << precision() << endl;      // "4" will be outputted 

It will affect all the following IO operations until specified again. 

♦        Field Width 

Method width and parameterized stream manipulator setw sets 
the IO field width. Method width returns the previous width. If the 

actual width is smaller than the set width, fill characters are 
inserted as padding. If it is wider then the set width, the full 
number will be printed. It only affect one succeeding data. 

When inputting characters with the width is set to n, only n-1 

characters will be inputted, and the last character will be set to 
NULL. 

Example using width method: 
  
 int w = 2; 
 char c[10]; 

 cin.width(3); 

  
 while(cin >> c) 

 {  cout.width(w++); 
    cout << c << endl; 

    cin.width(3); 
 } 

When you input “abcdefghijklnmopqrstuvwxyz”, the output will be 
  
ab 
 cd 



  ef 

   gh 
    ij 

     kl 
      nm 

       op 
        qr 

         st 
          uv 

           wx 
            yz 

Example using setw stream manipulator: 
  

int w = 4; 
char c[10]; 
  

while(cin >> setw(5) >> c) 
   cout << setw(w++) << c << endl; 

♦        Format State Flags 

1. 1.        ios::skipws Skip whitespace characters on an input 

stream 

2. 2.        ios::left Left justify 

3. 3.        ios::right Right justified 

4. 4.        ios::internal Number’s sign (+, -) left justified, 

magnitude right justified 

5. 5.        ios::dec Integer treated as decimal 

6. 6.        ios::oct Integer treated as octal 

7. 7.        ios::hex Integer treated as hexadecimal 

8. 8.        ios::showbase Put 0 in front of octal numbers, 0x 
or 0X before hexadecimal, to indicate the base 

9. 9.        ios::uppercase Use 0X instead of 0x for 

hexadecimals, and E instead of e for scientific notion 

10. 10.     ios::showpoint Float numbers should be outputted 
with a decimal point. Normally used with ios::fixed to 
guarantee a certain number of digits to the right of the decimal 

point. For floating-point-format output. 

11. 11.     ios::fixed Float numbers should be outputted with 

a specific number of digits to the right of the decimal point. 
Specially for floating-point format. 



12. 12.     ios::showpos the positive sign should be shown 

13. 13.     ios::scientific Outputs a number in scientific notion 

The static data member ios::adjustfield flag includes the bits 

left, right, and internal. The ios::basefield includes the oct, 
hex and dec bits. The ios::floatfield contains the flags scientific 
and fixed. 

All of these format state flags are defined as enums in class ios. 

They represent different bits of one long format state number, 
which is the settings of the IO stream. 

The flags, setf and unsetf methods and setiosflags and 
resetiosflags parameterized stream manipulators set and reset 
these flags. 

The flags method sets a number of flags and returns the previous 

settings. In its parameter list, you can “or” different flags with “|”. 
Any flags not specified in the list is reset. The unsetf and the two 

manipulators works similarly. 

The setf method sets one flag and the rest remains the same. 
When two flags separated with “,” are listed: 

  
cout.setf( ios::left, ios::adjustfield ); 

 the first is set, the second is reset. 

All of this format state flags affect all the following IO operations 
until specified again. 

  

float a = 7.6; 
float b = 333.14159; 
cout << setw(20) << setprecision(3) 
     << setiosflags(ios::internal | ios::showpos | 

ios::scientific) << a << endl; 
cout << setw(20) << b << endl; 

Output will be: 

+          7.600e+00 
+          3.331e+02 

♦        Padding (fill, setfill) 

The fill method and setfill stream manipulator set the padding 
character. Default is space character. 

  

float a = 3.3; 
cout << setw(8)  << setfill(‘#’) << a; 



will have an output 

  
#####3.3 

10.8 10.8       Stream Error States 

The state of a stream may be tested through bits in ios class. 

♦        eofbit and eof( ) Method 

The eofbit is automatically set for an input stream when EOF is 

encountered. When EOF is encountered on cin, the call cin.eof 
returns true. Here “encounter” means that there is no more bytes 

to read from the input stream. It does not mean that the reading 
method has already hitted the wall. 

♦        failbit and fail( ) Method 

The failbit is set and fail method returns true when recoverable 

format error occurs on the IO stream. When EOF is encountered 
during input, failbit is set for cin. 

♦        badbit and bad( ) Method 

The badbit is set and bad method returns true when irrecoverable 
lost-data error occurs on the IO stream.  

♦        goodbit and good( ) Method 

The goodbit is set and good method returns true when neither of 

the above errors occurs. 

♦        clear( ) Method 

The clear method is normally used to restore a stream’s state to 
“good” so that IO may proceed on that stream. Any error state bit 

listed above which becomes the argument is set. The default 
argument of clear method is ios::goodbit, so the statement 

“cin.clear” clears cin and sets goodbit for the statement, and 
“cin.clear(ios::failbit)” actually sets the failbit. 



11. 11.     FILE PROCESSING 

11.1 11.1       Data Hierarchy 

Field a group of characters conveying meaning 

Record composed of several fields (in C++ called members), such 
as structure or class 

File a group of related records 

Database a group of related files 

A collection of programs designed to manage database is called a 
Database Management System (DBMS). 

11.2 11.2       Primary  Key 

To facilitate the retrieval of specific records from a file, at least 

one field in each record should be chosen as a primary key. A 
primary key represents something unique of each entry, such as 

account number of bank customers, so that all entries can be 
uniquely identified by their record keys. 

11.3 11.3       Files and Streams 

The source of input may be keyboard, files on hard disk or other 
devices. The output destination may be screen, files on hard disk 

or other devices.  

For standard IO devices – keyboard and screen, C++ provides 

iostream objects cin, cout, cerr, clog. For other devices, you 
have to create objects yourself.  

An ifstream object can be used to input from a file on disk, an 
ofstream object can be used to output to a file on disk. A 

fstream object can be used both to input from and output to a 
file. You can use their methods open and close to open and close 
a certain file. For example, you can use 

  

ofstream file1("Frank.txt", ios::out); 

or you can use 

  

ofstream file1;                           
file1.open("Frank.txt", ios::out);        

You can also create a fstream object, which can be used for both 
input and output: 

  



fstream file("Frank.txt", iso::out | ios::in); 

The file connected to an object of ifstream, ofstream or fstream 
class will be automatically closed when the object leave scope and 
is destroyed. However, it is a good practice to explicitly close the 
file as soon as you do not use it any longer. Reasons are: 

1. 1.        Reduce resource usage; 

2. 2.        Improve the program's clarity; 

3. 3.        Prevent future misuse. 

11.4 11.4       File Open Modes 

When opening a file, you can pass together with file name the 
following open modes: 

1. 1.        ios::app: Append output to the end of the file 

2. 2.        ios::ate: Open a file and move the file position 

pointer to the end of the file. Normally used for starting at 
appending data, but by moving the file position pointer, data 

can be written anywhere in the file 

3. 3.        ios::in: Open a file for input 

4. 4.        ios::out: Open a file for output -- existing data in the 
file will be lost. If no such file, will create one 

5. 5.        ios::trunc: Discard the file's existing contents (same as 

ios::out) 

6. 6.        ios::nocreate: Do not create new files -- if no such file 

then open operation fails 

7. 7.        ios::noreplace: Do not replace -- if file exists then 

open operation fails 

By default, ofstream files are opened for output (ios::out), and 

ifstream files are opened for input (ios::in). 

11.5 11.5       Checking open and input success 

Overloaded ios operator method "operator!" is used to check the 
success of file opening. It returns nonzero (true) when either 

failbit or badbit is set for the stream on open operation, either 

for input or output. Some possible errors are attempting to open a 
nonexistent file for reading, to open a file for reading without 
permission, to open a file for writing when no disk space is 
available. Example: 

  
ostream file1(“Test.txt”); 



  

if(!file1) 
{ 

   cerr << "Can't open file! \n"; 
   exit(1);  

} 

Another overloaded ios operator method operator void* is used 
to check the success of stream input. It converts the IO stream 
into a pointer so it can be tested as 0 or nonzero. If failbit or 

badbit is set for the stream, 0 is returned. When EOF is 
encountered during input, failbit is set for cin. Example: 

  
while(cin>>a) 

while(file>>a) 

the condition in the while header automatically invokes the 

operator void* method. When EOF is inputted from keyboard or 

encountered in file1, 0 is returned and the while loop will stop. 

11.6 11.6       Method exit 

Method exit is called to end the program. Its argument is returned 
to the OS so that it can respond appropriately to the error. 

Argument 0 indicates that program terminates normally, other 
nonezero values indicate that program terminates due to error. 

11.7 11.7       File Position Pointer 

The value of the file position pointer is the number of the byte 

which is to be inputted or outputted. It can also be called "offset". 
To set this pointer for ifstream object, use method "seekg". For 
ofstream objects, use "seekp". The arguments of these two 
methods is normally a long integer. 

A second argument can also be passed to the methods as origin 
of the offset: 

1. 1.        ios::beg default -- count from beginning of the file 

2. 2.        ios::cur count from current location 

3. 3.        ios::end count from the end of the file 

Example: 
  

file1.seekg(0);           // beginning of the file 
file1.seekp(n, ios::cur)  // nth byte from current position 

file1.seekg(n, ios::end)  // nth byte from the end of file 
file1.seekp(0, ios::end)  // last byte in the file 



To get the current position of the file position pointer, use method 

"tellg" for ifstream objects and "tellp" for ofstream: 
  

long location = file1.tellp(); 

If you open a file for both input and output: 

  
fstream file(“Frank.txt”, ios::in | ios::out); 

you can write into it, relocate the file position pointer, then read 
from it, vice versa. 

11.8 11.8       Sequential Access File     

In computer's internal memory, different integers such as 7 or 

7777 are stored with the same number of bytes. But in a file they 
are stored in different sizes. Therefore, when you overwrite an 

original number with a longer one in a file, it will overwrite the 
following field. 

For this reason, this kind of files which store data in varied length 
are called "sequential access files". You have no idea on exactly 
how long each record occupies. Therefore, to find a particular 

record in the file, you have to read from the first one sequentially 
until you reach the one you want. You can not jump to a certain 

record directly. If you want to modify a record in the middle of the 
file, unless the length of the record is not changed, you have to 

first copy the records before the one to be updated into a file, then 
append the updated record to that file, then append the records 

following the updated one to the file. 

11.9 11.9       Random Access File and Object Serialization 

Random access file is opened in the same way as normal files, but 
the way to write data in it is different. Complete objects instead of 

primitives are read or written with class iostream’s method read 
and write. The object to be read and written can contain member 

objects, pointers and references to other objects, and other 

objects can again contain member objects, pointers and 
references. Method write will write everything necessary into the 
file, including the type information and the whole network of 
objects, so that later method read can recover it. The process of 

breaking an object into data stream is called “object serialization”. 

There is one restraint: the object to be serialized and all its 

network objects should all have fixed size. If the class contains a 
char * data member, because the length of the string is variable, 

method write can not properly allocate space for each record, and 



run-time error may happen. In such a case, use char [ ] instead of 

char *. 

Method read and write have the same functionality as Java’s 
readObject and writeObject method of class 
ObjectInputStream and ObjectOutputStream. 

Because you can not decide the format or sequence of each field, 
this way of IO is also called unformatted IO, whereas conventional 

way of IO is called formatted IO. 

Method write takes two arguments. First argument is the address 

of the object to be serialized, and it should be casted to the type 
of "const char *" type. The second argument is an integer of 

size_t specifying the number of bytes of the record. Keyword 
sizeof can be used to get this size. 

Method read has similar arguments as write, except that the 
pointer type is “char *”. 

  

file.write(reinterpret_cast<const char *>(&recordName), 
sizeof(recordName)); 

file.read(reinterpret_cast<char *>(&recordName), 
sizeof(recordName)); 

The position to start reading or writing is decided by file position 
pointer, which is set by seekg for inputting files and seekp for 
outputting files.  

  

#include "iostream.h" 
  
//************* class Base **************** 
class Base { 

public: 
   Base(const int = 0); 
   Base(const Base &); 

   const int get() const; 
protected: 

   const Base & operator=(const Base &); 
private: 
   int member; 
}; 

  
Base::Base(const int i): member(i) {} 
  
Base::Base(const Base & b): member(b.member) {} 

  



const Base & Base::operator=(const Base & rv) 

{ 
   member = rv.member; 

   return *this; 
} 

  
const int Base::get() const 

{   return member;  } 
  

  
//***************** class Derived ******************* 

class Derived : public Base { 
public: 

   Derived(const int = 0, const int = 0); 
   Derived(const Derived &); 

   const Derived & operator=(const Derived &); 
   void print() const; 
private: 

   int member; 
}; 

  
Derived::Derived(const int i1, const int i2) : Base(i1), 

member(i2) 
{} 

  
Derived::Derived(const Derived & d) : Base(d), 

member(d.member) 
{} 

  
const Derived & Derived::operator=(const Derived & rv) 

{ 

   member = rv.member; 
   Base::operator=(rv); 
   return *this; 
} 

  
void Derived::print() const 
{ 
   cout << "Base member is " << Base::get() << endl; 

   cout << "Derived member is " << member << endl; 
} 
  
  

//************** class ClientData ******************** 



class ClientData { 

public: 
   ClientData(int = 0, Derived * = 0); 

   int getId() const; 
   void print() const; 

private: 
   int id; 

   Derived * derived; 
}; 

  
ClientData::ClientData(int i, Derived * d): id(i), derived(d) {} 

  
int ClientData::getId() const 

{   return id;  } 
  

void ClientData::print() const 
{ 
   cout << id << ": "; 

   derived->print(); 
} 

  
  

//***************** main ***************** 
int main(int argc, 

 
 


